MLIR Compiler Infrastructure Beyond
Machine Learning

Alex Zinenko (Brium Inc.)

April 28,2025

What Is a Compiler

compiler
/keam'pa1la/
noun

a program that converts instructions into a machine-code or lower-level form so that they
can be read and executed by a computer.

What Is a Compiler

What Is a Compiler

lexical analysis algebras graph theory
S semantic analysis set theory
- syntax analysis abstract interpretation
proofs encoding

What Is a Compiler

Just-in-Time (JIT) Compiler

browser

’ JS

config.pb
configuration.proto c Forma?‘,bar -
config.cpp

Source-to-Source Cam,bf/er Jugt-in-Time (/IT) Compiler

How Does a Compiler Work

B=» =

Frontend: Backend:
understand the generate the
input language output language

How Does a Compiler Work

Intermediate Reprecentation (IR)

O
o
ﬂ%} B’(‘)C e
Frontend: % Backend:

understand the 0/3 . generate the
input language §O\O\O output language

How Does a Compiler Work

Moct of Compiler recearch
happens here!

Frontend: %\o Middle-end: =~ Backend:

understand the O/O" « make faster generate the
input language b\o\o output language

How Does a Compiler Work

How Does a Compiler Work

ey

‘ j "\ W —~ '“'\)
\ l(t“; ;V“ ,"‘ ! (*“‘;\ J
.I.i Multi-language Retargetable

How Does a Compiler Work

How Does a Compiler Work

What Is MLIR

MLIR
/am al A1 .1/
acronym

Multi-Level Intermediate Representation. A unifying software framework for
compiler development.

MLIR Structure

Value (result) Operation Uce of l/atue Attribute dictionary
/ / [opemua/) (etatic info about operation)
%res:2 = "mydialect.morph"(%input#3) {some.attribute = true, other_attribute = 1.5}

(!'mydialect<"custom_type">) -> (!mydialect<"other_type", !mydialect<"other_type">)

loc(callsite("foo" at "mysource.cc":10:8))

N

Type Source (ocation
(ctatic info about valve)

MLIR Structure

Value (result) Operation Uce of l/atue Attribute dictionary
/ / [opemua/) (etatic info about operation)
%res:2 = "mydialect.morph" (%input#3) {some.attribute = true, other_attribute = 1.5}

('mydialect<"custom_type">) -> (!mydialect<"other_type", !mydialect<"other_type">)

loc(callsite("foo" at "mysource.cc":10:8))

N

Type Source (ocation
(ctatic info about valve)

MLIR Structure

%results:2 = "d.operation"(%arge, %argl) ({
// Regions belong to Ops and can have multiple blocks. Region

-2 [
}) () -> (!d.type, !d.other_type)

MLIR Structure

%results:2 = "d.operation"(%arge, %argl) ({

// Regions belong to Ops and can have multiple blocks.

~block(%argument: !d.type):

Block

~other_block:
| "d.terminator"() [~block(%argument : !d.type)] : ()

Region

-2 [
}) () -> (!d.type, !d.other_type)

MLIR Structure

%results:2 = "d.operation"(%arge, %argl) ({

// Regions belong to Ops and can have multiple blocks. Reghan
A % : id. :
block(%argument: !d.type) . Block
%value = "nested.operation"() ({

}) = () -> (!d.other_type)
"consume.value" (%value) : (!d.other_type) -> ()
~other_block:

| "d.terminator"() [~block(%argument : !d.type)] : ()

-2 [
}) () -> (!d.type, !d.other_type)

MLIR Structure

%results:2 = "d.operation"(%arge, %argl) ({

// Regions belong to Ops and can have multiple blocks. Region
~block(%argument: !d.type): Block
%value = "nested.operation”() ({
// Ops can contain nested regions. Region

"d.op”"() : O -> QO
}) = () -> (!d.other_type)
"consume.value" (%value) : (!d.other_type) -> ()
~other_block:
| "d.terminator"() [~block(%argument : !d.type)] : ()

-2 [
}) () -> (!d.type, !d.other_type)

Little Builtin, Everything Customizable

No fixed set of:
- Operations
- Attributes
- Types

Bring your own anything:
- Aslong as you define and verify semantics
- Group into “dialects”

Representation Matters

#include <math.h> define double @foo(double noundef %08) {

%2 = tail call double @llvm.exp.f64(double %0)
%3 = tail call double @llvm.log.f64(double %2)
ret double %3

}

double foo(double x) {
return log(exp(x));

clang -S -emit-1lvm -03

Representation Matters

#include <math.h> define double @foo(double noundef %08) {

%2 = tail call double @llvm.exp.f64(double %0)
%3 = tail call double @llvm.log.f64(double %2)
ret double %3

}

double foo(double x) {
return log(exp(x));

/0? gX: X ?77

o o o

clang -S -emit-1lvm -03

Representation Matters

e >\fj:i:;§?7/‘
D
define double @foo(double noundef %08) {

ret double %0
IIIII" }

clang -S -emit-1llvm -ffast-math -03

#include <math.h>

double foo(double x) {
return log(exp(x));

}

Representation Matters

LLUM IR has intrincics for ¢ and o R
log, but not for expmT and (591p ﬁq@?

#include <math.h> define double @foo(double noundef %08) {
%2 = tail call fast double @expml(double %0)
%3 = tail call fast double @loglp(double %2)
ret double %3

}

double foo(double x) {

return logip(expml(x));

)

log (1 + x)

log (1 + €-1)= log ¢ = x 777

clang -S -emit-1llvm -ffast-math -03

Representation Matters

In MLIR, thece live in the Math
dialect and are ‘optional’.

func.func @bar(%0 : f64) -> f64 {
%1 = math.expml %0 fastmath<fast> : f64

#include <math.h>

double foo(double x) { %2 = math.log1p %1 fastmath<fast> : f64

return logip(expml(x));

)

log (1 + x)

return %2 : fé64
}

What Can Be Represented

Dialects

48 dialects

“upstream”

‘affine' Dialect

‘amx’ Dialect

‘arith’ Dialect
‘arm_neon' Dialect .
e arith
'ArmSME' Dialect
‘async' Dialect
‘bufferization’ Dialect
‘cf' Dialect

‘complex' Dialect

‘diti’ Dialect

‘emitc’ Dialect

‘func' Dialect

'gpu’ Dialect

‘index' Dialect

‘linalg' Dialect

‘math' Dialect

'mesh’ Dialect

'nvgpu’ Dialect

'nvvm' Dialect

‘omp' Dialect
'pdl_interp' Dialect
math
'polynomial' Dialect
'ptr' Dialect

'quant' Dialect

‘scf' Dialect

‘smt' Dialect

‘tensor' Dialect

'ub' Dialect

'veix' Dialect
'x86vector' Dialect
‘xegpu' Dialect

Builtin Dialect
Oplnterface definitions
SPIR-V Dialect

(TOSA) Dialect
Transform Dialect

Arithmetic operations

arith.addf %a, %b

Mathematical functions (= libm

math.exp %a

What Can Be Represented

Dialects

48 dialects

“upstream”

‘acc’ Dialect
‘affine’ Dialect
"amdgpu’ Dialect
‘amx’ Dialect

“arith’ Dialect
‘arm_neon’ Dialect
arm_sve' Dialect
"ArmSME' Dialect
‘async’ Dialect
“bufferization’ Dialect
‘cf Dialect
‘complex' Dialect
“dlti Dialect

‘emitc’ Dialect
“func’ Dialect

‘gpu’ Dialect
“index’ Dialect

“irdl" Dialect

“inalg’ Dialect
“Ilvm’ Dialect
‘math Dialect
‘memref' Dialect
‘mesh' Dialect
‘mi_program' Dialect
‘mpi' Dialect
“nvgpu' Dialect
‘nvwm' Dialect
‘omp Dialect
“pdl_interp' Dialect
“pdl Dialect
“polynomial' Dialect

‘ptr' Dialect

‘quant! Dialect
‘rocdl' Dialect
‘scf' Dialect

‘shape’ Dialect

‘smt! Dialect
‘sparse_tensor' Dialect

‘tensor' Dialect

“ub Dialect

“veix' Dialect

ector' Dialect

'xg6vector' Dialect

xegpu' Dialect

Builtin Dialect

Opinterface definitions

SPIR-V Dialect

Tensor Operator Set Architecture
(TOSA) Dialect

Transform Dialect

memref

ptr

Multidimensional memory references

A

Pointers

What Can Be Represented

Dialects

‘ace’ Dialect
‘affine’ Dialect
‘amdgpu’ Dialect
‘amx' Dialect
“arith’ Dialect
‘arm_neon' Dialect
‘arm_sve' Dialect
"ArmSME' Dialect

Graph Control flow (goto

‘async' Dialect
‘bufferization’ Dialect
‘cf' Dialect
‘complex' Dialect
“diti* Dialect
‘emitc’ Dialect
‘func' Dialect
'gpu’ Dialect
‘index’ Dialect
T
‘linalg' Dialect
e
. ‘math’ Dialect

48 dialects oA
‘mesh’ Dialect
e
'nvgpu’ Dialect

“upstream”

‘omp’ Dialect

/ cf
'pdl_interp' Dialect
scf Structured Control flow (loops)
‘polynomial Dialect

'ptr' Dialect

'quant’ Dialect

‘scf' Dialect

‘smt' Dialect

‘tensor' Dialect

'ub' Dialect

'veix' Dialect

'x86vector' Dialect

‘xegpu’ Dialect

Builtin Dialect

Oplinterface definitions

SPIR-V Dialect

(TOSA) Dialect

Transform Dialect

What Can Be Represented

linalg Structured Linear Algebra

linalg.generic {
iterators = ["parallel", "parallel", "reduction"]
indexing_maps = [

affine_map<(i, j, k) -> (i, k),

affine_map<(i, j, k) -> (k, j),

affine_map<(i, j, k) -> (i, j)

48 dialects]

pg } ins(memref<?x?xf32>, memref<?x?xf32>)
“ ” T outs(memref<?x?xf32>) {
upstream — "bbB(%a: 32, %b: £32, %c: f32):

ot s %0 = arith.mulf %a, %b : f32

%1 = arith.addf %0, %c : f32

e yield %c : 32

‘scf' Dialect }
sl ialec
v

Tensor Arithmetics (ML-style)

tosa.matmul

s or Set Architecture
(TOSA) Dialect
Transform Dialect

What Can Be Represented

Dialects

‘affine' Dialect
‘amx’ Dialect
‘arith’ Dialect
‘arm_neon' Dialect N N N
mesh Distributed Computation
'ArmSME' Dialect
‘async’ Dialect
‘bufferization’ Dialect
‘cf' Dialect
‘complex' Dialect
‘diti’ Dialect
‘emitc’ Dialect
‘func' Dialect
'gpu’ Dialect
‘index' Dialect
“linalg' Dialect
. ‘math' Dialect

48 dialects e
'mesh’ Dialect
'nvgpu’ Dialect

“upstream”

‘omp' Dialect

‘pdl_interp’ Dialect -
mpi MPI
‘polynomial' Dialect

‘ptr' Dialect

‘quant’ Dialect

'scf' Dialect

‘smt' Dialect

'tensor" Dialect

'ub' Dialect

'veix' Dialect

'x86vector' Dialect

‘xegpu' Dialect

Builtin Dialect

Oplinterface definitions

SPIR-V Dialect

(TOSA) Dialect

Transform Dialect

What Can Be Represented

Dialects

48 dialects

“upstream”

‘affine’ Dialect

‘amx' Dialect

‘arith’ Dialect
‘arm_neon' Dialect
acce
'ArmSME' Dialect
‘async' Dialect
‘bufferization' Dialect
‘cf' Dialect

‘complex' Dialect
'dlti' Dialect

‘emitc’ Dialect

‘func' Dialect

‘gpu’ Dialect

‘index’ Dialect

"linalg' Dialect

'math' Dialect

'mesh’ Dialect
‘nvgpu’ Dialect
'nvvm' Dialect

‘omp' Dialect
‘pdl_interp’ Dialect
openmp
‘polynomial Dialect
‘ptr' Dialect

'quant’ Dialect

'scf' Dialect

‘smt' Dialect

'tensor" Dialect

'ub' Dialect

'veix' Dialect
'x86vector' Dialect
‘xegpu' Dialect
Builtin Dialect
Oplinterface definitions
SPIR-V Dialect
(TOSA) Dialect

Transform Dialect

OpenACC “pragmas”

OpenACC

OpenMP “pragmas”

OpenMP

What Can Be Represented

gpu GPU programming abstraction

func.func @no_args(%sz : index) {
// Normal (host) function.
gpu.launch blocks(%bx, %by, %bz)
in (%grid_x = %sz, %grid_y = %sz, %grid_z = %sz)
threads(%tx, %ty, %tz)
in (%block_x = %sz, %block_y = %sz, %block_z = %sz) {

48 dialects // GPU kgrnel. Code motion is allowed between the two.
gpu.terminator
= }
“upstream” o : return

‘pdl' Dialect
‘polynomial' Dialect
‘ptr' Dialect

‘quant! Dialect
‘rocdl' Dialect

‘scf' Dialect

nvgpu CUDA abstraction
(we also have ROCm equivalent)

nvgpu.tma.async.load

nvgpu.mma.sync

s or Set Architecture
(TOSA) Dialect

Transform Dialect

What Can Be Represented

48 dialects

‘upstream”

Dialects
‘ace’ Dialect
‘affine Dialect
‘amdgpu’ Dialect
‘amx Dialect
‘arith Dialect
‘arm_neon’ Dialect
‘arm_sve' Dialect
"ArmSME' Dialect
‘async' Dialect
“butferization" Dialect
‘cf' Dialect
‘complex' Dialect
“diti Dialect
‘emitc’ Dialect
“func' Dialect
‘gpu’ Dialect
‘index' Dialect
“irdl" Dialect
‘linalg’ Dialect
“llvm' Dialect
‘math’ Dialect
‘memref' Dialect
‘mesh’ Dialect
‘ml_program' Dialect
‘mpi' Dialect
'nvgpu’ Dialect
‘nvvm'’ Dialect
‘omp' Dialect
“pdl_interp' Dialect
“pdl Dialect
‘polynomial' Dialect
‘ptr' Dialect
‘quant’ Dialect
‘rocdl' Dialect
‘scf Dialect
‘shape’ Dialect
'smt' Dialect
sparse_tensor' Dialect
‘tensor' Dialect
‘ub’ Dialect
“eix' Dialect
"vector' Dialect
'x86vector' Dialect
‘xegpu' Dialect
Builtin Dialect
Oplnterface definitions
SPIR-V Dialect
Tensor Operator Set Architecture
(TOSA) Dialect
Transform Dialect

100s

“downstream”

Users of MLIR
I alphabetical rder below:
Accera

code. With Accer

hand-wit i

Fyinon lbrary and supports cross1
Beaver

Beaver is an MLIR frontend in Eliir
features, Beaver provides a simple,

Bror2mLIr: A Format

HEIR

MLIR-based

Soagofor comping ragrams that o
complratens t be partomad diect
rosarving cata prvacy thoughout

Biing upon e fourdaton o VLR

Nod Distributed Runtime: Asynchronous fine-grained op-level
parallel runtime

for developing

: mple, we inferenc i
oo rpreseiog n e BN cluster while exploting fne-grained op-level paralllism.
Seniicaton Gorman,and has boan s IREE ONIEMILIR
Catalyst ST AT e o Notk Exchang (NN whichis an cbon
Ctaats an AT comptor o310 ONNXCMLIR i 3 MLIR-based compier forrewriing a
o B o ! machines, and B0 Systam 2.
s fori et specifically re g ONNX Noutal Network Models Using VLR

integration nto the Pytho

Catalyst i comes wih 1 : Kokkos OpenXLA
e x o g MR

GPUs and QPUS. appiications in a hardware agnosticw) vt

» " leading effort i the US to prepare the PLAIAML
CIRCT: Circuit IR Com 1, mwemms‘sm,mu“.p‘e” PlaidMLis. i models across various
The CIRCT projectis an (experimer applications in a p b Gl

Vet brars An MLIR-based JIT and AOT compiler

Concrete: TFHE COM} 1o 1R 1o support ted and A ey for DL and non-DL computations It can
equivalent Lingo DB:

Concrete is an open-source framey

Polygeist: C/C++ frontend and optimizations for MLIR

makes writing
HEis a

¢

LingoDB

flexibity and extensil
relatior

Poly Raising C to Polyhedral MLIR and the GPU Polygeist paper

pr

to eff
instance, Concrete ML is buift o to
learning use cases.

DSP-MLIR: A Framew

LingoDB can perform cross-domain ¢

its flexibilty enables sustainable sups |

LingoDB heavily builds on the MLIR c:
without much latency.

High-Performance GPU-to-CPU T

Pylir

Py d-of-Time i tuses MLR
sy

of i
Garbage colector support

n MLIR MARCO: Modelica Adv pcr

DSP-MLRL A fort i T
s‘mummn of The thmic and har

framework

supy
(DCT, FET. IFFT), and athr sanal 5

des\gn-d

SOPHGO TPU-MLIR

Enzyme. General Autc

by m
o s oo fantons

ML for SOPHGO TRU. hitps:/anivors]
shar 50t

w MLIR-AIE: info Substrait MLIR
Sk e o e general MUR-AE s a i = Substalt
Brooct uhich uses Enzyme o dife. ShMOMA block. Backend cods gent TensorFlow
Codegen for Jax. el abstractions onabling HGher-0y eomes vt . iR
Firefly: A new compile MLIR-DaCe: Data-Ceni corerter aunizsten,).
Fief s notan complr, bt a1 WLR-DaC s proctiming oo Tenstorrent MLIR Compiler
pler aina it Tenstorent A
e mpiement | accel o
The pr « Giatect MU R o et
e v MLIR-EmitC TFRT: TensorFlow Runtime
" nsle TFRT.
Elang ook 00 Tensorrion medt Torch-MLIR
The at The Torch-ML ”
e i o ramage he 5. The CHC detoct ol aswlla the T8 Toc
subsequently accepted into the LL\ the MLIR-EmitC repository. %9
compileris modeled using MR- 1 5 Triton
Mojo Tonga e imot
Mojos butaso
> it waher ising DSLs.

of
aims to be a strict superset of Pythor

immediately for long-tail ecosystem e YAS
VaST|

VAST: C/C++ frontend for MLIR
ibrary for VAST provides a
analyses. Using the MLIR

infrastructure, VAST provides a

Project Verona They are

https://mlir.llvm.org/users/

https://mlir.llvm.org/users/

How to Handle Generality: Traits

Trancformations reason about

traite, not individual operations

Traits: [Associative, Commutative, Pure,

void transformation(Qpération *op) {
SameOperandAndResultType]

if (op->hasTrait<Associative>()) {

%3 = arith.addi %1, %2 Value operand = op->getOperand(0);
%4 = matrix.multiply %5, %6 op->setOperand(@, op->getOperand(1));
op->setOperand(1, operand);

Traits: [Associative, AntiCommutative, Pure, ... }
LoopDecomposable] }

How to Handle Generality: Interfaces

Ifaces: [ConditionallyAssociative, ... —_— s R “ -
ConditionallyCommucative] bool AddFOp::isAssociative() “override” {

return getFastMathAttr().isAllowReassoc();
Traits: [Asseedative, Commutative, Pure,
SameOperandAndResultType] b

%3
%4

arith.addf %1, %2

matrix.multiply %5, %6

Traits: [Associative, Pure,
LoopDecomposable]

Ifaces: [AntiCommutative] — Value MatrixMultiplyOp::buildInverse(OpBuilder &b, ...)
“override” {

return b.create<MatrixInverseOp>(...).getResult();

Why Bother? Climate Model Domain Compilers

Domain-Specific Multi-Level IR Rewriting for GPU: DSL .
The Open Earth Compiler for GPU-accelerated Climate &

Climate Simulation Weather Seismic

TOBIAS GYSI and CHRISTOPH MULLER, ETH Zurich, Switzerland lmage

OLEKSANDR ZINENKO, Google, France . I

STEPHAN HERHUT, Google, Germany Processi ng I
~

EDDIE DAVIS, TOBIAS WICKY, and OLIVER FUHRER, Vulcan Inc, USA

Imaging Stencil Concepts

. a data flow,
TORSTEN HOEFLER, ETH Zurich, Switzerland [e it I o B : L
TOBIAS GROSSER, University of Edinburgh, UK IR > aVa ~ neighbor accesses, Semantics
explicit parallelism
Most compilers have a single core intermediate representation (IR) (e.g., LLVM) sometimes complemented n -|
with vaguely defined IR-like data structures. This IR is commonly low-level and close to machine instructions. Sec. Ste nci 3.000 LOC
Asareault, fons relying on domain-specific inf are either not possible or require complex load, access,
analysis to recover the missing information. In contrast, multi-level rewriting instantiates a hierarchy of L. A
dialects (IRs), lowers programs level-by-level, and performs code transformations at the most suitable level Machine Sec. IV c store, return, OPel’atlons
We demonstrate the effectiveness of this approach for the weather and climate domain. In particular, we i . o _~ Fortran apply
develop a prototype compiler and design stencil- and GPU-specific dialects based on a set of newly introduced L earning Vg Pl
design principles. We find that two d pecific lines of code) realized on top o LLVM's =3 ~
extensible MLIR compiler suffice to ? f-the-art solutions. In essence, multi- AV
level rewriting promises to herald the age of specialized compilers composed from domain- and target-specific inlining, S #
dialects implemented on top of a shared infrastructure. G icO Affine 6.000 LOC i 4 Optimization
CCS Concepts: » Software and its engineering — Compilers; Domain specific languages; - Applied eneric Opt. unrofling
computing — Earth and atmospheric sciences; DCE
Additional Key Words and Phrases: Weather and climate, stencil computations, intermediate representations INST-CMB scF 2.000 LOC - afﬁ B
)
CSE :
= scf (loops), Conversions

Standard 6.000 LOC \ -» standard

Sec. V

Tobias Gysi also with Google.

Tobias Grosser also with ETH Zurich.

The work done at ETH Zurich has received funding from the European Research Council (ERC) under the European
Union's Horizon 2020 programme (grant agreement DAPP, No. 678880), the Swiss National Science Foundation under the
Ambizione programme (grant PZ00P2168016), and ARM Holdings plc and Xilin Inc in the context of Polly Labs.

Authors’ addresses: T. Gysi, C. Miller, and T. Hoefler, ETH Zurich, Switzerland; emails: gysit@google.com,
{christoph.mueller, htor}@int.ethz.ch; O. Zinenko, Google, France; email: zinenko@google.com; S. Herhut, Google, Ger-
‘many; email: herhut@google.com; E. Davis, T. Wicky, and O, Fuhrer, Vulcan Inc, USA; emails: {EddieD, TobiasW, OliverFj@
vulcan.com; T. Grosser, University of Edinburgh, UK; email: tobias grosser@ed.ac.uk.

Domain-Specific
3.000 LOC

.................. Generic MLIR

HY

This work is licensed under a Creative Commons Attribution International 4.0 License

© 2021 Copyright held by the owner/author(s) Ta rget-speuflc
1544-3566/2021/09-ARTS1 $15.00

hitps://doi.org/10.1145/3469030

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 4, Article 51. Publication date: September 2021

https://dl.acm.org/doi/pdf/10.1145/3469030

https://dl.acm.org/doi/pdf/10.1145/3469030

Why Bother? Climate Model Domain Compilers

Domain-Specific Multi-Level IR Rewriting for GPU:
The Open Earth Compiler for GPU-accelerated
Climate Simulation

TOBIAS GYSI and CHRISTOPH MULLER, ETH Zurich, Switzerland
OLEKSANDR ZINENKO, Google, France

STEPHAN HERHUT, Google, Germany

EDDIE DAVIS, TOBIAS WICKY, and OLIVER FUHRER, Vulcan Inc, USA
TORSTEN HOEFLER, ETH Zurich, Switzerland

TOBIAS GROSSER, University of Edinburgh, UK

Most compilers have a single core intermediate representation (IR) (e.&, LLVM) sometimes complemented
with vaguely defined IR-like data structures. This IR s commony low-level and close to machine nstructions
Asa result ions relying on domain-sp are cither not possible or require complex
analysis to recover the missing information. In contrast, multi-level rewriting instantiates a hierarchy of
dialects (IRs), lowers programs level-by-level, and performs code transformations at the most suitable level
We demonstrate the effectiveness of this approach for the weather and climate domain. In particular, we
develop a prototype compiler and design stencil- and GPU-specific dialects based on a set of newly introduced
design principles. We find that two d pecific lines of code) realized on top of LLVM's
extensible MLIR compiler suffice to : f-the-art solutions. In essence, multi-
level rewriting promises to herald the age of specialized compilers composed from domain- and target-specific
dialects on top of a shared

CCS Concepts: - Software and its engineering — Compilers; Domain specific languages; - Applied
computing — Earth and atmospheric sciences;

Additional Key Words and Phrases: Weather and climate, stencil computations, intermediate representations

Tobias Gysi also with Google.

Tobias Grosser also with ETH Zurich.

The work done at ETH Zurich has received funding from the European Research Council (ERC) under the European
Union's Horizon 2020 programme (grant agreement DAPP, No. 678880), the Swiss National Science Foundation under the
Ambizione programme (grant PZ00P2168016), and ARM Holdings plc and Xilin Inc in the context of Polly Labs.

Authors’ addresses: T. Gysi, C. Miller, and T. Hoefler, ETH Zurich, Switzerland; emails: gysit@google.com,
{christoph.mueller, htor}@int.ethz.ch; O. Zinenko, Google, France; email: zinenko@google.com; S. Herhut, Google, Ger-
‘many; email: herhut@google.com; E. Davis, T. Wicky, and O, Fuhrer, Vulcan Inc, USA; emails: {EddieD, TobiasW, OliverFj@
vulcan.com; T. Grosser, University of Edinburgh, UK; email: tobias grosser@ed.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License

© 2021 Copyright held by the owner/author(s).
1544-3566/2021/09-ARTS1 $15.00
hitps://doi.org/10.1145/3469030

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 4, Article 51. Publication date: September 2021

func @sum(%in : !stencil.field<?x?x?xf64>, %out : !stencil.field<?x?x?xf64>) {

stencil.assert %in ([-4, -4, -4]:[68, 68, 68]) : !stencil.field<?x?x?xf64>
stencil.assert %out ([-4, -4, -4]:[68, 68, 68]) : !stencil.field<?x?x?xf64>
%0 = stencil.load %in : (!stencil.field<?x?x?xf64>) -> Istencil.temp<?x?x?xf64>
%1 stencil.apply (%argd = %0 : !stencil.temp<?x?x?xf64>) -> lstencil.temp<?x?x?xf64> {
%2 = stencil.access %arg@[1, 0, 0] : (!stencil.temp<?x?x?xf64>) -> f64
%3 = stencil.access %arg@[-1, 0, 0] : (!stencil.temp<?x?x?xf64>) -> f64
%4 = addf %2, %3 : f64
stencil.return %4 : f64

— define storage shapes

~—stencil operator

}
stencil.store %1 to %out ([0, @, ©]:[64, 64, 64]) : !stencil.temp<?x?x?xf64> to !stencil.field<?x?x?xf64>

return ™\ define output domain

example range boundary stencil access

- s : . %0] il. ?x?
[-1,0]:[3,2] @ iniiér domaiii] stencil.temp<?x?xf64>

@ stencil access !
i=1, j=1

3,21 %010,01 = ¢ .\ %0 [1, 0]

['11 0]

origin [0, 0] %0 [0, -1]

https://dl.acm.org/doi/pdf/10.1145/3469030

https://dl.acm.org/doi/pdf/10.1145/3469030

Why Bother? Climate Model Domain Compilers

Domain-Specific Multi-Level IR Rewriting for GPU:
The Open Earth Compiler for GPU-accelerated
Climate Simulation

TOBIAS GYSI and CHRISTOPH MULLER, ETH Zurich, Switzerland
OLEKSANDR ZINENKO, Google, France

STEPHAN HERHUT, Google, Germany

EDDIE DAVIS, TOBIAS WICKY, and OLIVER FUHRER, Vulcan Inc, USA
TORSTEN HOEFLER, ETH Zurich, Switzerland

TOBIAS GROSSER, University of Edinburgh, UK

Speedup 128-f32 mmm 256-f32
Most compilers have a single core intermediate representation (IR) (e.g., LLVM) sometimes complemented Speed u p 1 2 8-f32 - 2 5 6-f3 2

X:&E :’:S;,:::lv defined ?R llliilv.)i;:lags(l;;‘tlilurc% Th:s IRis (ommonlv ln:!wﬂ lrxﬁt:x;it1::,2:,T,::iil:::,:::it::ﬁi 0 1 2 8_f6 4 2 5 6_f64 1 2 8 'f64 - 2 5 6'f6 4

analysis to recover the missing information. In contrast, multi-level rewriting instantiates a hierarchy of ™ o

dialects (IRs), lowers programs level-by-level, and performs code transformations at the most suitable level ~N @© ooco,\ ,\

We demonstrate the effectiveness of this approach for the weather and climate domain. In particular, we < e 24 1n nging .@w@ '\4 R m"< i g
develop a prototype compiler and design stencil- and GPU-specific dialects based on a set of newly introduced I~ Naa 159 ! H et

design principles. We find that two d pecific lines of code) realized on top of LLVM's s ""_‘H

o)
> © © ©m o . w. st
extensible MLIR compiler suffice to i f-the-art solutions. In essence, multi- 2 0 et A rEE - B e -
level rewriting promises to herald the age of specialized compilers composed from domain- and target-specific - ™M B an o o gt b 5
dialects on top of a shared infi — EhEAE] =S 1 1
CCS Concepts: - Software and its engineering — Compilers; Domain specific languages; - Applied 1
computing - Earth and atmospheric sciences;
Additional Key Words and Phrases: Weather and climate, stencil computations, intermediate representations 0- 0

Aye. P 9. Uz g Tl D5
(o] 715 115) 02 lop) ,Oe \9/~ ,(— ’7)
1/51(Q S”’eg @e,) q f/ » 0\' o 7 Q/ \ g,.ea Gq s Q &9/)

%S%
A,
S‘/V

Tobias Gysi also with Google.

Tobias Grosser also with ETH Zurich.

The work done at ETH Zurich has received funding from the European Research Council (ERC) under the European

Union's Horizon 2020 programme (grant agreement DAPP, No. 678880), the Swiss National Science Foundation under the

Ambizione programme (grant PZ00P2168016), and ARM Holdings plc and Xilin Inc in the context of Polly Labs.

s O € Mk B A Bkt Sehisnt el rmotseces Over STELLA (COSMO) Over Dawn (FV3)
{christoph.mueller, htor}@int.ethz.ch; O. Zinenko, Google, France; email: zinenko@google.com; S. Herhut, Google, Ger-

‘many; email: herhut@google.com; E. Davis, T. Wicky, and O, Fuhrer, Vulcan Inc, USA; emails: {EddieD, TobiasW, OliverFj@

vulcan.com; T. Grosser, University of Edinburgh, UK; email: tobias grosser@ed.ac.uk.

On V100-SXM2

This work is licensed under a Creative Commons Attribution International 4.0 License

© 2021 Copyright held by the owner/author(s).
1544-3566/2021/09-ARTS1 $15.00
hitps://doi.org/10.1145/3469030

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 4, Article 51. Publication date: September 2021

https://dl.acm.org/doi/pdf/10.1145/3469030

https://dl.acm.org/doi/pdf/10.1145/3469030

Why Bother? CFD Domain Optimization

Code Generation for In-Place Stencils

Mohamed Essadki Bertrand Michel Bruno Maugars
ONERA ONERA ONERA
Chatillon, France Chatillon, France Chatillon, France
fr bertrand.mi e b
Oleksandr Zinenko Nicolas Vasilache Albert Cohen
Google Google Google
Paris, France Zirich, Switzerland Paris, France
Abstract February 25~ March 1,2023, Montréal, OC, Canada. ACM, New York,

Numerical simulation often resorts toiterativ in-place sten-
cils such as the Gauss-Seidel or Successive Overrelaxation

NY, USA, 12 pages. hitps:/doi org/10,1145/3579990. 3580006

1

Writing high p
of such stencils requires significant effort and time; it also

Wejase inereted 1 the paralelisation and optmtation
of

itself. While automated code generation is a mature technol-

ogy for image processing stencils, convolutions and out-of-

place iterative stencils (such as the Jacobi method), the opti-

‘mization of in-place stencils requires manual craftsmanship.
tensor

prop pe &

ol : p
implemented in the MLIR framework, tensor abstractions
incrementally refined and lowered down to parallel, tled,
fused and vectorized code. We used our generator to imple-
t a realistic, implicit solver for structured meshes, and

lemonstrate results competitive with an industrial compu-
tational fluid dynamics framework. e also compare with
stand-alone stencil kernels for dense tensors.

CCS Concepts: - Software and its engineering — Com-
pilers; - Theory of computation — Parallel computing
‘models; - Applied computing — Physical sciences and en-
gineering.

s: Computational Fluid Dynamics, Inplc Meth-
ods Guss Seide, SO, herative I place Sencls, Do
Specific Code Generation, MLIR, Venartion, Tiling,
ACM Reference Form:

‘Mohamed Essadki, lsemznd Michel Bruno Maugars,Olksons 7

(cFD) npp].lnzlmni and
‘more specifically lrnphul finite-volume numerical methods
to solve differential equations. This consists in Sscet g
the space domain into small cells representing the conser-
vative fields of the simulation (mass density, momentum,
gy, etc, where the volume value of each field is aver-
aged over a given cell). Then, at every step of the simulation,
a solver based on the implicit method (for faster conver-
‘gence and scalability) proceeds by rewriting the differential

equations in the form of a large and sparse linear system
Ax=b (1)

where A is a square matrix of size m X m, x and b are two

ical solution of the physical fields. An implicit CFD solver
can typically be split in two main phases

1. first compute the vector b, iterating over the faces of

the cells to compute a numerical flux [34, 36] which
can be considered as a function of the two solutions
in adjacent cells separated by a common face;

2. then, rather than explicitly updating the fields in the
cell solve the linear system using an iterative method
like Successive Overrelaxation (SOR), a variant of the

Gauss-Seidel method [12, 42].

It remains an open problem to design and implement a

nenko,Nicolas

e el ,,/ h CMIEEE.

2,

Permisson to make digital or hard copies of part ar all of this work for

code generator for implicit finite-volume
solvers using sate-of-the-art methods like SOR. Unlike the
Jacobi iterative method and all stencil codes occurring in
image processing and neural networks, SOR is an in-place

personal or »

the space domain. Because of these internal dependences,

party components o this work must b honored. For al other uses,contact
the ownerfauthor(s)

€GO 23, February 25 - March 1, 2023, Moniréal, OC, Canada

© 2023 Copyright held by the owner/author(s).

ACMISBN 979-8-4007-0101-6/23/02.

s dotorg/10.1145/3576990 350006

vectorization of in-place stencils require
a wavefront schedule. This incurs additional control flow
and indexing overheads and higher complexity in model-
ing locality-enhancing transformations such as tling (cache
blocking) and fusion. It is important to optimize such in-
place stencils, since in typical scenarios Gauss-Seidel and

Sub-domains Stencil
Pattern

=

Sub-domain
Dependences

=N

ul

https://research.google/pubs/code-generation-for-data-dependent-stencils/

https://research.google/pubs/code-generation-for-data-dependent-stencils/

Why Bother? CFD Domain Optimization

Code Generation for In-Place Stencils

Mohamed Essadki
ONERA

Chatillon, France

Bertrand Michel
ONERA

Chatillon, France
trand.mi

Bruno Maugars
ONERA

Chatillon, France

Oleksandr Zinenko Nicolas Vasilache Albert Cohen
Google Google
Paris, France Zirich, Switzerland Paris, France

Abstract
Numerical simulation often resorts to iterative in-place sten-
cils such as the Gauss-Seidel or Successive Overrelaxation

February 25 - March 1, 2023, Montréal, OC, Canada. ACM, New York,
NY, USA, 12 pages. hitps://dol org/10,1145/3579990.3580006

1

Writing high p
of such stencils requires significant effort and time; it also

Wejase inereted 1 the paralelisation and optmtation
of

kemel
itself. While automated code generation is a mature technol-
ogy for image processing stencils, convolutions and out-of-
place terative stencils (such as the Jacobi method), the opti-
‘mization of in-place stencils requires manual craftsmanshi

prop in-sp &

ol : p
implrtented n the MU framevark,tensor sbarsctions
are incrementally refined and lowered down to parallel tiled,
fused and ectoized code,We used our genertor o mpe-

licit sol d mesh
dmu.mmg one competitive it an industtal compu-
tational fluid dynamics framework. e also compare with
stand-alone stencil kernels for dense tensors.

CCS Concepts: - Software and its engineering — Com:
pilers; - Theory of computation — Parallel computing
‘models; - Applied computing — Physical sciences and en-
gineering.

ywords: Computational Fluid Dynamics, Implicit Meth-
mh ‘Gauss-Seidel, SOR, Iterative In-place Stencils, Do
Specific Code Generation, MLIR, Vectorization, Tiling,
ACM Reference Form:
‘Mohamed Essadki, lsem:nd Mchal R Mg, Ol 2

(CFD) applications, and
more specifically mphul finite-volume numerical methods
to solve differential equations. This consists in discretizing
the space domain into small cells representing the conser-
vative fields of the simulation (mass density, momentum,
energy, ete., where the volume value of each field is aver-
aged over a given cell). Then, at every step of the simulation,
a solver based on the implicit method (for faster conver-
‘gence and scalability) proceeds by rewriting the differential
equations in the form of a large and sparse linear system
Ax=b (1)

where A is a square matrix of size m X m, x and b are two

ical solution of the physical fields. An implicit CFD solver
can typically be split in two main phases

1. first compute the vector b, iterating over the faces of
the cells to compute a numerical flux [34, 36] which
can be considered as a function of the two solutions
in adjacent cells separated by a common face;

2. then, rather than explicitly updating the fields in the
cell solve the linear system using an iterative method
like Successive Overrelaxation (SOR), a variant of the
Gauss-Seidel method [12, 42].

It remains an open problem to design and implement a
code generator for implicit finite-volume

nenko,Nicolas

e s ,,/ h C/IEEE I

29,

Permisson to make digital or hard copies of part ar all of this work for

solvers using state-of-the-art methods like SOR. Unlike the
Jacobi iterative method and all stencil codes occurring in
image processing and neural networks, SOR is an in-place

personalor

the space domain. Because of these internal dependences,

party components o this work must b honored. For al other uses,contact
the ownerfauthor(s)

€GO 23, February 25 - March 1, 2023, Moniréal, OC, Canada

© 2023 Copyright held by the owner/author(s).

ACMISBN 979-8-4007-0101-6/23/02.

s dotorg/10.1145/3576990 350006

d vectorization of in-place stencils require
a wavefront schedule. This incurs additional control flow
and indexing overheads and higher complexity in model-
ing locality-enhancing transformations such as tling (cache
blocking) and fusion. It is important to optimize such in-
place stencils, since in typical scenarios Gauss-Seidel and

4.5

4.0

1.0

0.5

deﬂo 5Pt de\—lo 9pt]

https://research.google/pubs/code-generation-for-data-dependent-stencils/

B C+Pluto 1

1 thread

3.6

[\ 6Pt
de\lo—""‘;a‘ seiae30-
“\ -

B C+Pluto 2

. MLIR

10 threads

20.0

17.5

15.0

125

10.0

7.5

5.0

2.5

. ¢e\7«0’sp de\lo opt.°0 de\7-0 99 \de\3d

Speedup over Pluto compiler
on 2x Intel Xeon 6152 CPUs (NUMA)

https://research.google/pubs/code-generation-for-data-dependent-stencils/

Why Bother? CFD Domain Optimization

Code Generation for In-Place Stencils

Mohamed Essadki Bertrand Michel Bruno Maugars
ONERA ONERA ONERA
Chatillon, France Chatillon, France Chatillon, France
fr bertrand.mi e b
Oleksandr Zinenko Nicolas Vasilache Albert Cohen
Google Google Google
Paris, France Zirich, Switzerland Paris, France
Abstract February 25~ March 1,2023, Montréal, OC, Canada. ACM, New York,

Numerical simulation often resorts toiterativ in-place sten-
cils such as the Gauss-Seidel or Successive Overrelaxation

NY, USA, 12 pages. hitps:/doi org/10,1145/3579990. 3580006

1

Writing high p
of such stencils requires significant effort and time; it also

Wejase inereted 1 the paralelisation and optmtation
of

itself. While automated code generation is a mature technol-

ogy for image processing stencils, convolutions and out-of-

place iterative stencils (such as the Jacobi method), the opti-

‘mization of in-place stencils requires manual craftsmanship.
tensor

prop pe & %

ol : p
implemented in the MLIR framework, tensor abstractions
incrementally refined and lowered down to parallel, tled,
fused and vectorized code. We used our generator to imple-
t a realistic, implicit solver for structured meshes, and

lemonstrate results competitive with an industrial compu-
tational fluid dynamics framework. e also compare with
stand-alone stencil kernels for dense tensors.

CCS Concepts: - Software and its engineering — Com-
pilers; - Theory of computation — Parallel computing
‘models; - Applied computing — Physical sciences and en-
gineering.

s: Computational Fluid Dynamics, Inplc Meth-
ods Guss Seide, SO, herative I place Sencls, Do
Specific Code Generation, MLIR, Venartion, Tiling,
ACM Reference Form:

‘Mohamed Essadki, lsemznd Michel Bruno Maugars,Olksons 7

(cFD) npp].lnzlmni and
‘more specifically lrnphul finite-volume numerical methods
to solve differential equations. This consists in Sscet g
the space domain into small cells representing the conser-
vative fields of the simulation (mass density, momentum,
gy, etc, where the volume value of each field is aver-
aged over a given cell). Then, at every step of the simulation,
a solver based on the implicit method (for faster conver-
‘gence and scalability) proceeds by rewriting the differential

equations in the form of a large and sparse linear system
Ax=b (1)

where A is a square matrix of size m X m, x and b are two

ical solution of the physical fields. An implicit CFD solver
can typically be split in two main phases

1. first compute the vector b, iterating over the faces of

the cells to compute a numerical flux [34, 36] which
can be considered as a function of the two solutions
in adjacent cells separated by a common face;

2. then, rather than explicitly updating the fields in the
cell solve the linear system using an iterative method
like Successive Overrelaxation (SOR), a variant of the

Gauss-Seidel method [12, 42].

It remains an open problem to design and implement a

nenko,Nicolas s,
e el ,,/ h CMIEEE.

2,

Permisson to make digital or hard copies of part ar all of this work for

code generator for implicit finite-volume
solvers using sate-of-the-art methods like SOR. Unlike the
Jacobi iterative method and all stencil codes occurring in
image processing and neural networks, SOR is an in-place

personal or »

the space domain. Because of these internal dependences,

party components o this work must b honored. For al other uses,contact
the ownerfauthor(s)

€GO 23, February 25 - March 1, 2023, Moniréal, OC, Canada

© 2023 Copyright held by the owner/author(s).

ACMISBN 979-8-4007-0101-6/23/02.

s dotorg/10.1145/3576990 350006

vectorization of in-place stencils require
a wavefront schedule. This incurs additional control flow
and indexing overheads and higher complexity in model-
ing locality-enhancing transformations such as tling (cache
blocking) and fusion. It is important to optimize such in-
place stencils, since in typical scenarios Gauss-Seidel and

1.0
—#— This paper
0.8 - elsA

teen (US)

0.0

0 5 10 15 20 25 30 35 40
Number of Threads

Comparable to elsA (ONERA
Keeps using memory instead of MPI

https://research.google/pubs/code-generation-for-data-dependent-stencils/

https://research.google/pubs/code-generation-for-data-dependent-stencils/

Why Bother? Programs as Mathematical Objects

Compilers

Principles, Techniques, & Tools

)_‘ v

J

for k in range(P):

Clil[j] += A[i][k] + B[k][j]

* textbook material

{Gjk):ijke 20cicNAo<j<MnOo<ke<P!

Why Bother? Programs as Mathematical Objects

Compilers

Principles, Techniques, & Tools

Clil[j] += A[i][k] + B[k][j]

:)\ ¥ Alfred V. Aho

y '8 Monica S. Lam
Ravi Sethi
Jeffrey D. Ullman

J

for i in range(N):
for j in range(M):
for k in range(P):
; i ﬁ ﬁ)j)

* textbook material
{Gjk):ijk€ 2 0ci<cNNo<j<MANO<k<P]

Why Bother? Programs as Mathematical Objects

Polygeist: Raising C to Polyhedral MLIR

William S. Moses™ Lorenzo Chelini" Ruizhe Zhao" Oleksandr Zinenko
MIT CSAIL TU Eindhoven Imperial College London Google Inc
Cambridge, MA, USA Eindhoven, The Netherlands London, UK Pari, France
sk
bstraci—We present new compilation flow that 1
conncets the MLIR o ntraircture 1o cuting edge -~
capable of comvering a broad range of cxisting codes into = Clng = Fronend = ProOpt St it —)
comersion between MLIR and OpenScop exchange forma. The o L
Py MLIR mtrmedal reraentaon caufog g pr a1 L0 »}’Jf.‘,‘. A

...) loop constructs and n-D arrays embedded

signment (SSA) substrate enables an_ nprecedented
Comibinati of SSA-bica and polyhedral opimtsaiont. We

mations: statement splitting and reduction parallelzation. Our
evaluation

demonstrates that Polygeist outperfo

234%) and parallel mode (9.47x vs 326x, 7.54x) thanks to the.
representation and transformations.

1. INTRODUCTION

Improving the effciency of computation has always been

one of the pine guls of compuling. Pogram erfonance

improved significantly by reaping the benefits of par-

ity Lenpors axd ol sy, o pertomarce

vant progam asformtions e patiul

dious and challenging when targeting modern multicore A

ind GPUs with decp memory hirarchien and paralicion, and
are often performed automatically by optimizing compilers.

‘The polyhedral model enables precise analyses and a rela-
tively easy specification of transformations (loop restructuring,
automatic paralelization, etc.) that take advantage of hardware
performance sources. As a resul, there is growing evidence
that the polyhedral model is one of the best frameworks for
elfcint wformaion of compui inense prograns .

propamming scosleto gbtecees B

m. [6] Consequenty, the compiler community bas fos

o ety and optmse . of he

program that can be represented witin e polyhedral model

(commonly referred to as stati-control parts,or SCoP's). Such
tools tend to fall into two categorics.

Compiler-based tools lke Polly 7] and Graphite [8] detect
and transform SCoPs in compiler intermediate representations
(IRs). While this offers seamless infegration with rest of the.
compiler, the lack of high-level structure and information hin-
ders the tools” abiliy to perform analyses and transformations.
“This structure needs to be recovered from optimized IR, often

* Equal contriion,

Fig. 1. The Polyscst compllation flow consists of 4 stages. The fontead
o cmit MUIR SCF dinlct (Secton
Atine dilct and pre opimized (5.

© post
5 2 s 0
CIVM R for frheroptimiatin and ey gersion by LV

impertectly or at a significant cost [9]. Morcover, common
compiler optimizations such as LICM may interfere with the
process (I0). Finally, low-level IR often lack constructs for,
.. paralllism or reductions, produced by the transformation,
which makes the flow more complex.

Soure-10-source compilers such as Plto [[1], PoCC [12]
and PpCG [5) operate directly on C or -+ code. While this
can effectively leverage the high-level information from source
code, the effectiveness of such tools s ofien reduced by the
lack of enabling optimizations such as those converting haz-
ardous memory loads into single-assignment virtual registers
Furthermore, the transformation results must be expressed in
€, which is known (o be complex [13], [14] and is also
missing constructs for, e.g., reduction loops or register values
no backed by memory storage.

“This paper proposes and evaluates the bencfis of a polyhe-
aral compilation flow, Polygeist (Figure 1) that can leverage
both the high-level structure available in source code and the
fine-grained control of compiler optimization provided by low-
Ievel IR It builds on the recent MLIR compile infrastructure
that allows the interplay of muliple abstzaction levels within
the same representation, during the same transformaions (15].
Intermixable MLIR abstractions, or dialects, include high-

1 constructs such as loops, parallel and reduction pat-
terns; low-level representations fully covering LLVM IR [16};
and & polyhedral-inspired representation featuring loops and
memory accesses annotated with affne expressions. Morcover,
by combining the best of source-level and IR-level t0ols in
an end-o-end polyhedral flow, Polygeist preserves highlevel
information and leverages them 1o perform new or improved

7N

Cor C++ Clang AST MLIR SCF MLIR Affine

- Clang —> Frontend - Pre-Opt —» Stmt Split
> Stage 1 2 Stage 2 : 4
Binary LLVM IR MLIR Parallel ~ OpenSCoP

< LLVM - Backend = Post-Opt - Polyhedral

Stage 4 i Stage 3

Connecting C and C++, and any MLIR loops,
to pre-existing Polyhedral optimization tools

https://ieeexplore.ieee.org/abstract/document/9563011

https://ieeexplore.ieee.org/abstract/document/9563011

Why Bother? Programs as Mathematical Objects

Polygeist: Raising C to Polyhedral MLIR

William S. Moses
MIT CSAIL TU Eindhoven

Ruizhe Zhao"
Imperial College London

Oleksandr Zinenko
Gaogle Inc.

Cambridge, MA, USA Eindhoven, The Netherlands London, UK Paris, France
K
bstract—We present Polygeist, a new compilation flow that
connects the MLIR compiler infrastructure o cutting cdge -~
capable of converting a broad range of cxisting codes into ~ Clns ~ Frostend =~ ProOp. St Spt <
3 St o sms]

comerton bevcn MLIR 1) Opencop s omat: The
PolygeisUMLIR intermediate representation featuring high-level
...) loop rrays embedded inlo 1 sngle
static_assignment (SSA) substrate cnables edented
Combination of SSA-based and. plyhedral optimisations. We

constructs and n-D.

mations: statement splitting and reduction parallelzation. Our

234%) and parallel mode (9.47x vs 326x, 7.54x) thanks to the.
representation and transformations.

1. INTRODUCTION
Improving the effciency of computation has always been
one of the pine guls of compuling. Pogram erfonance
< improved igaificaniy by epin e benes of ar
ity temporal and spatial locaity, and other performance
soutces. Relevan progam uslomtons s puiulaly e
mulicore CPUs
ind GPUs with decp memory hirarchien and paralicion, and
are often performed automatically by optimizing compilers.

‘The polyhedral model enables precise analyses and a rela-
tively easy specification of transformations (loop restructuring,
automatic paralelization, etc.) that take advantage of hardware
performance sources. As a resul, there is growing evidence
that the polyhedral model is one of the best frameworks for
elfcint wformaion of compui inense prograns .

programming accelerator architectures [4],

m. [6] Consequenty, the compie community has oeused

' tools that ideniify and optimize parts of the

program that can be represented witin e polyhedral model

(commonly referred to as stati-control parts,or SCoP's). Such
tools tend to fall into two categorics.

Compiler-based tools lke Polly 7] and Graphite [8] detect
and transform SCoPs in compiler intermediate representations
(IRs). While this offers seamless infegration with rest of the.
compiler, the lack of high-level structure and information hin-
ders the tools” abiliy to perform analyses and transformations.
“This structure needs to be recovered from optimized IR, often

* Equal contriion,

< LM < Bkend ~ Pos O »mM.,,-

Fig. 1. The Polyscst compllation flow consists of 4 stages. The fontead
ncrses Clang AST to cmit MLIR SCF dilet (Section [ITR), which is
nived o the Aline dislect 44 pr

then procesed by a polybedsal scheduer (Sections|
optimizton and purlelization (Secion
LLVM IR for further optimization and binary geoeation by LLV.

impertectly or at a significant cost [9]. Morcover, common
compiler optimizations such as LICM may interfere with the
process (I0). Finally, low-level IR often lack constructs for,
.. paralllism or reductions, produced by the transformation,
which makes the flow more complex.

Soure-10-source compilers such as Plto [[1], PoCC [12]
and PpCG [5) operate directly on C or -+ code. While this
ca feively leveragethe high-evlinformation from source

Furthmore, th wansformaton result mus be expressed
€, which is known (o be complex [13], [14] and is also
missing constructs for, e.g., reduction loops or register values
no backed by memory storage.

“This paper proposes and evaluates the bencfis of a polyhe-
dral complation flow, Polygeist (Figure 1), that can leverage
both the highlevel structure available i source code and the
fine-grained control of compiler optimization provided by low-
Ievel IR It builds on the recent MLIR compile infrastructure
that allows the interplay of muliple abstzaction levels within
the same representaion, durin the same transformations [15]
Intermixable MLIR abstractions, or dialects, include high-
evel constzucts such as loops, parallel and reduction pat-
ters; low-level epresentations ully covering LLVM IR [16];
and & polyhedral-inspired representation featuring loops and
memory accesses annotated with affne expressions. Morcover,
by combining the best of source-level and IR-level t0ols in
an end-to-end polyhedral low, Polygeist preserves high-level
information and leverages them o perform new of improved

10°

LT

P O @ o gt GO o o ™
B o o o @ S (@ g0® 0™ 8t GO (" (P o @ (P (8 &°
o of o & PO ‘4 R 8o ES ° W @O (e ,\a(_o° \3(,0'\’ e\de ¢e:° 262
)

B pluto . polly -_— pulygesr

Faster than pre-existing Polyhedral optimization tools
thanks to higher-level abstraction

https://ieeexplore.ieee.org/abstract/document/9563011

o
X
“e. 7 0\,6

ITLLRLERLLTTAAT]]

,,v-‘l \-,\“

‘ﬂ(\ x\“" \1\"‘?’
36\

https://ieeexplore.ieee.org/abstract/document/9563011

Why Bother? Raise the Abstraction Level

Progressive Raising in Multi-level IR

Lorenzo Chelini Andi Drebes Oleksandr Zinenko Albert Cohen
TU Endhoven Inria and Ecole Normale Supérieure Google Google
Eindhoven, The Netherlands Paris, France Pari, France Pars, France
Lehelini@uent
Nicolas Vasilache “Tobias Grosser Henk Corporaal
Goog Universityof Edinburgh U Eindhoven
Zurich, Switzerland burgh, UK Eindhoven, The Netherlnds

tobi

X

Abstract—Maltievel Intermediate representations (IR) show

point nto the compiation pipeine deines the highest el
o sracion for all et (ot B T

fangute tat are oot prmee)l miphoel gt
required abstr
W R

ing in multi-level
0 higher-level abstractions to leverage domain-specific transfor-

Level Tctics, ou dclraive appreach for progresive i
implemented on top of the MLIR framework, and demnnslu'e
the progressive raising mm o loop nests specied

Our risingpats leerae sbsequent ighlevel domaimspecie

“index T
Mo coumy

R progrecie g, e e

L. INTRODUCTION

The increasing complexity of hardware resulting from
the ongoing trend for heterogencous systems has made
difficult for general-purpose compilers (o generate efficient
code automatically [1). One of the main issues is the mismatch
between the low level of abstraction at which general-purpose
compilers operate and the various high-level abstractions for
computation required by today’s applications (2] Although
highlevel programming languages allow for the specification
of high-level operations, this information is often not captured
by the low-level intermediate representation (IR) of general-
purpose compilers or lost early in the compilation process
during lowering 3]

‘Domain-specific languages (DSL) and compilers attempt
to capuure and explicitly preserve high-level information
throughout the compilation process and have been employed
successfully 1o generate efficient code for modem hardware [4],
[5). However, such languages commit o a limited set of isolated

iy, &

Fig. 1: Multi-Level Tactics lifts general-purpose languages to

higher-abstraction levels to enable effective domain-specific
compilation via progressive lowering.

abstractions and domain-specific optimizations, resulting in

poor interoperability, limited reusability of software compo-

nents, and few opportunities for inter-domain optimizations [6].
Muli-level intermediate representations explicity allow for

the co-existence of multiple abstrictions within the same com-

pilation framework with interoperable representations, breaking
the isolation between domains and enabling comprehensive
optimizations. During compilation, the source program’s high-
level representation s progressively optimized and transformed

to lower-level abstractions, until reaching a low-level, general-

purpose representation for code generation [7].

Multi-level frameworks solve many ssues of DSLs, but
the optimizations in progressive lowering compilation scheme
erucially rely on the adequate initial representation of the source

ails 1o apply. However, providing an adequate high-level input
representation may not always be possible. General-purpose
languages not being semantically rich enough 1o preserve the
right level of information enter the lowering pipeline at a very
low level, thus precluding most, if not all, domain-specific

Pre-existing—

Naive loope —+

TDL

TDL DSL
Frontend

Multi-Level Tactics

TDS

(TableGen) Multi-Level

Tactics Backend

>

Structural
matchers

Access

LER Builders

.mlir MLIR Pattern lifted.mlir

Rewriter

—BLAS

Input program transformations

https://ieeexplore.ieee.org/abstract/document/9370332

https://ieeexplore.ieee.org/abstract/document/9370332

Why Bother? Raise the Abstraction Level

Progressive Raising in Multi-level IR

Lorenzo Chelini Anc Oleksandr Zinenko Albert Cohen
TU Endhoven Inria and Ecole Normale Supérieure Google Google
Eindhoven, The Netherlands Paris, France Pari, France Pars, France
Lt 1 "
Nicolas Vasilache “Tobias Grosser Henk Corporaal

Zurich, Switzerland
tobi

University of Edinburgh
Edinburgh, UK

d

TU Eindhoven
Eindhoven, The Netherlands
X

 AbracMultfeve Intermetate eprsetatons (I) show
et promise for lowerng the desgn costs for domain

oo by proviing . rewsble cxtnsible, and. noncopins.

onaied frameork for expresing domain-specic nd highevel

phebrcton ol it e Keliog.

Tamgungs o sr ol semanicaly Fch enout 1 el the
requieed abstraction
R

ing in multi-level
0 higher-level abstractions to leverage domain-specific transfor-

Level Tactics, our declarative spproach for progressive raising,
implemented on top of the MLIR framework, and demonstrate
the progrestve raising from afine loop neds specfed in a

Our g pals everge sbscquent ighlevel domaimspecie
transformat rmance improvements.

dex Teme-_MLIR® progresive b, i nd e
diate representation

L. INTRODUCTION

The increasing complexity of hardware resulting from
the ongoing trend for heterogencous systems has made it
difficult for general-purpose compilers (o generate efficient
code automatically [1). One of the main issues is the mismatch
between the low level of abstraction at which general-purpose

compilers operate and the various high-level abstractions for
computation required by today’s applications (2] Although
highlevel programming languages allow for the specification
of high-level operations, this information is often not captured
by the low-level intermediate representation (IR) of general-
purpose compilers or lost early in the compilation process
during lowering 3]

‘Domain-specific languages (DSL) and compilers attempt
to capuure and explicitly preserve high-level information
throughout the compilation process and have been employed
successfully 1o generate efficient code for modem hardware [4],
[5). However, such languages commit o a limited set of isolated

Fig. 1: Multi-Level Tactics lifts general-purpose languages to
higher-abstraction levels to enable effective domain-specific
compilation via progressive lowering.

abstractions and domain-specific optimizations, resulting in
poor interoperability, limited reusability of software compo-
nents, and few opportunities for inter-domain optimizations [6].

Muli-level intermediate representations explicity allow for
the co-existence of multiple abstrictions within the same com-
pilation framework with interoperable representations, breaking
the isolation between domains and enabling comprehensive
optimizations. During compilation, the source program’s high-
level representation s progressively optimized and transformed
to lower-level abstractions, until reaching a low-level, general-
purpose representation for code generation [7].

‘Multi-level frameworks solve many issues of DSLs, but
the optimizations in progressive lowering compilation scheme
erucially rely on the adequate initial representation of the source
program. If the initial representation is below the required level
of abstraction for 4 given optimization, the optimization simply
ails 1o apply. However, providing an adequate high-level input
representation may not always be possible. General-purpose
languages not being semantically rich enough 1o preserve the
right level of information enter the lowering pipeline at a very
low level, thus precluding most, if not all, domain-specific

GFLOP/sec

128
64
32
16

InClang -O3 '/ Pluto-default | # Pluto-Best " " MLT-Linalg | IMLT-BLAS

T

rv‘

\u\Llu\Ll

56\

145.5 GFLOP/s

x Aé &

Can target BLAS, which is (obviously) faster than any
automatically compiled code. On Intel i9-9900K.

https://ieeexplore.ieee.org/abstract/document/9370332

https://ieeexplore.ieee.org/abstract/document/9370332

Why Bother? Modernize and Port Legacy Code

Retargeting and Respecializing GPU Workloads for
Performance Portability

Polygeist-GPU

Tvan R. Ivanoy
Tokyo Institute of Technology

Oleksandr Zinenko
Google DecpMind

Paris, France
zinenko@google.com
ivanov..aa@m fitechac jp
Jens Domke Toshio Endo ‘William S. Moses
RN R0 Tokyo Institute of Technology University of Ilinois UrbanaChampaign
Tokyo, Japan joogle DecpMind

jens. domicrien i endo@is techacp

Abstract—In order to come close 10 peak performance, accel-

avi i shi
tensor cores, etc. Unfortunatel, the pursut of higher perfo
‘mance and lower costs have led (0 a significant diversiication of
architecture en from the same vendor. This creates

‘need for perfon ity across different GPUs,
‘specially important for programs in a particular pr g

with & certain architecture in. mind. when

program can be scamlessly exccuted on a different architecture,
it may suffer c penalty due 10 it not being
‘appropriately to the available hardware resources such as fast
‘memory sters, let ewer advanced.
features of the architecture.

We propose ipproach to improvi
Gegacy) CUDA programs for modern machines by sutomatically
adjusiing the amount of work each parallel thread docs,
the amount st resources it requires. By

s O ot el o e g ity
10 it the size of target GPUs,

Combined with satotaing asisted by the platorm pectc
‘compiler, ur approach demonstrates Specdup on

MD GPUs executing the same CUDA prog

L. INTRoDUCTION

Aceelerators like GPUS remain the hardware target of choice

leverage a peculiar programming model, most often exposed as
C++ language extensions such as CUDA for NVIDIA GPUs
and ROCm for AMD, While the community has developed
hernaive mehods o porably progrem GEUS, nciodiag, &
high-level block programming model in Triton (1), automatic
mapping of C++ code onto GPUs [2], NumPy.style sbstractions
with varying degree of automated scheduling in JAX [3], TC (4],
and TVM [5]; many of the performance-criical scientifi

Ilinois, United States
‘wsmoses @illinois.cdu

programs, includin these very porability frameworks, remain
writien in CUDA|

While the CUDA programming model and syntax have
remained relatively stable over time, the underlying GPU
hardware has evolved significantly, adding many new features

4 i ¢ e o 0O s i ity
on a hardware unit while modern GPUs use “full warps” of
52 and allow up 1o 2045 threads per hardware unit. Symilar
hangsca e chcredn s ot of sl Loy

sory and regisers. This trend is even more important when

£ Comideing GPUs of a diffrent sendor, ke AMD, which

operate in “wavefronis” of 64 threads and allow up (o 4096
threads per hardware unit

Even when GPU kernels written in CUDA appear (o run

on newer NVIDIA GPUs, they may often fail 1o reach similar

tilizaton s the keoels s ncarcly sizd for the aget

may be avoided through skillful

e of the programming model by writing CUDA. programs

»
. that adapt o different numbers of concurrent threads. But even
A and

programs with this flexibility do not permit control of the
amount of allocated “shared'” memory between several threads

problems ae oen amplifed when poring proram 0 GPU
of a different vendor, letalone the often non-trivial engincering
effort of porting itscl.

In this paper, we propose a compiler-based mechanism to.
“resize” GPU programs to & particular architecture. Tuking
existing CUDA code, our compiler can control the granularity
of the program including the amount of work performed by

Vi it of v e, e ROGm g YL 6, he CUDA
frameverk @ GPU progmin e s b sy
e s S o . s o st

970.6-3503-9509-9124 © 2024 [EEE 119

Polygeist
C++ (CUDA)
MLIR (GPU)

opt. | MLIR (Parallel)

[MLIR (OpenmP)|

[MLIR(CUDA) | | MLIR(AMD) |
1 I

Device
Binary
¥

Device
Binary

i

| _MUR(CUDA) | | MLIR (AMD)]@

[wmr |: [R | [ivmr |
v : ¥ ¥
[Binary | : [Binary(cuba) | [Binary (ROCM) |

https://ieeexplore.ieee.org/abstract/document/10444828

https://ieeexplore.ieee.org/abstract/document/10444828

Why Bother? Modernize and Port Legacy Code

Retargeting and Respecializing GPU Workloads for
Performance Portability

Tvan R. Ivanoy
Tokyo Institute of Technology

ivanov..aa@m fitechac jp

Oleksandr Zinenko
Google DecpMind
Paris, France
zinenko@google.com

Jens Domke o ‘William S. Moses
RIKEN R-CCS Tokyo Institute of Technology University of Ilinois Urbana-Champaign
3 Tokyo, Japan Google DeepMind
jens domke@riken,jp endo@is.titech.acp Ilinois, United States

Abstract—In order to come close 10 peak performance, accel-

‘wsmoses @illinois.cdu

programs, includin these very porability frameworks, remain
writien in CUDA|

it understand the avalabilty of shared memory, parallelism, = R
fensor cores, etc. Unfortunately, the pursuit of higher perfor. WPHE the CUDA programming model and syntax have
manee and ower costs have ed 1 a simifiant divensfcation of Temained relatively stable over time, the underlying GPU
architec even from the same vendor. This creates hardware has evolved significantly, adding many new features

need for performance portability across different GPUs, and instructions. For example, earlier versions of programmable
‘specially important for programs in a particular pr g

g NVIDIA GPUs used “half warps” o 16 threads for scheduling

and had a limitation of 1024 threads running concurrently
wdware unit while modern GPUs use “full warps” of

i rmanc; on a ha
‘appropriately to the available hardware resources such as fast 32 and allow up (0 2048 threads per hardware unit. Similar
memory and_ registers, letalone not using. newer advanced changes can be observed i the amount of avilsble low.latency

propose & o
Gegacy) CUDA programs for modern machines by sutomatically

‘memory and registes. This trend is even more important when

" considering GPUs of a different vendor, like AMD, which

operate in “wavefronis” of 64 threads and allow up (o 4096

d
the amount of memory and regiser resources it requires. By Ureads per hardware unit

Even when GPU kernels written in CUDA appear (o run

10 also target AMD GPUs by performing automatic transation o, nesger NVIDLA GPUs, they may ofien fail o reach similar

from CUDA and simultaneously adjust the program granularity
10 it the size of target GPUs,
Combined with autotuning asisted by the platform-specific

uilization as the Kernels are incorrectly sized for the target
architecture. However, this may be avoided through skillful

compiler, ur approach demonstrates 27% gsoman spesdp on ¢ of the programming model by writing CUDA programs

\MD GPUs executing the same CUDA program.
L. INTRoDUCTION

Aceelerators like GPUS remain the hardware target of choice
for performance-critical software. Achicving high performance

»
. that adapt o different numbers of concurrent threads. But even
A and

programs with this flexibility do not permit control of the
amount of allocated “shared'” memory between several threads
in s group or the smount of registers used (which is proportional
10 the number of threads). Both of these characteristis have
 dramatic impact on the overall performance. These sizing
problems are often amplified when porting a program o 3 GPU
of a different vendor, letalone the often non-trivial engincering

on these accelerators requires programmers to effectively cffort of porting itslf
leverage a peculiar programming model, most often exposed as 1 this paper, we propose a compiler-based mechanism to

C++ language extensions such as CUDA for NVIDIA GPUs

frrieo i e = o i
mapping of C-+ code onto GPUs [2], NumPy.-style abstractions
il varying degte o sutomated scheduling i JAX [, TC 0,

“resize” GPU programs to & particular architecture. Tuking
existing CUDA code, our compiler can control the granularity
of the program including the amount of work performed by

Vi it of varices slematives, ke ROCm and SYCL], the CUDA
rameverk. ponser of the GPU programming ol i e 1 sgfcanty
egay.

and TVM [5]; many of the scientific

970.6-3503-9509-9124 © 2024 [EEE 119

CUDA A100
- clang B P-G no par. opts B P-G w/ par. opts

B

S 71

< 1 1.07x 1.27x geomean

s 44

& 21

215+

g 11 :

3 100111011101 11ariiiami

AMD MI210
- hipify+clang Bl P-G no par. opts . P-G w/ par. opts]

1 1 1 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 1

67;1 1.04x 1.17x geomean i

Relative speedup (log)
)

Older CUDA code is made faster (better shmem use)
And also runs on AMD transparently!

https://ieeexplore.ieee.org/abstract/document/10444828

https://ieeexplore.ieee.org/abstract/document/10444828

How to Start Using It

@ MLIR

Multi-Level IR Compiler Framework

Community > Debugging Tips FAQ Source > Bugs Logo Assets Youtube Channel

Home

Governance

Getting Started

MLIR Related Publications Don't miss the MLIR Tutorial! slides - recording - online step-by-step

Users of MLIR

Talks
Please refer to the LLVM Getting Started in general to build LLVM. Below are quick instructions to build MLIR

with LLVM.

Deprecations & Current Refactoring
Getting Started
The following instructions for compiling and testing MLIR assume that you have git, ninja, and a working

Code Documentation
C++ toolchain (see LLVM requirements).

As a starter, you may try the tutorial on building a compiler for a Toy language.

https://mlir.llvm.org/getting_started/

https://mlir.llvm.org/getting_started/

How to Start Using It

https://www.youtube.com/watch?v=I1XAp6ZAWyBY

https://www.youtube.com/watch?v=lXAp6ZAWyBY

Little Builtin, Everything Customizable

No fixed set of: Define your abstraction
Operations / Reuse existing when possible
Attributes
Types

Bring your own anything:
As long as you define and verify semantics
Group into “dialects”

How to Start Using It

https:/mlir.llvm.org/

Contact thece people

The MLIR project aims to provide a framework for defining intermediate representation
(IR). Feel free to use this category for any MLIR-related discussion! o oum - |
pally
WMLIR » ‘ subcategories » ‘ tags » | Latest New() Unread(132) Top @ NewTopc 0 gt
e
R
Announcements Newsletter Tensor Complier Deprecation & [
We will try to publist category is intended 1o Important
Code Sgneration for In-Plfee Stencils § 4 optimzations

et Refactoring

Retargeting and Respecializing ¢fPU Workloads for

it n MLIRItps.

LinalgOp:
function should return..

coo@ili®o 1

° a
nakstevental 1520
Jouite expecting fegionsaiiders rotums Logicatiessit?

e e 1 N aman
Progressive Raising in rLulu level IR S
™ - ~ ## mlic & To e thi For example, in our
o o ina Wi B2 i incomeci muik st ince my understanding ra hen calars are ls lgned o512
aos e ° o n 4 communiy st by desgn am ising scmethig? Thar
[Rra——
MLIR Open Masting: Tnsor Compller WG, 2025.04-20 Y L 154
oo cvn
Bug in‘OperationEquialonce (breaks cse”on Tnalg indox') 0308 <« 3 bot R R e AL
b ## hist The LLM Praject vmum»mnammw«wmmm,.m
e o 558 o L e et
i b e .
s Iivm/llvm-project ga
Mandatoy dtaayoutnthe LLVM disect y & @
s 0898 # poygeist #
LIR Area Team Moeting Minute ® N 2 G

» # buldbotupdates

wwtterrnews

https://llvm.discourse.group/c/mlir/31 https://discord.qq/xS77362

Open Meeting: Thursdays, 18:00 CEST

https://llvm.discourse.group/c/mlir/31
https://discord.gg/xS7Z362
https://mlir.llvm.org/

