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What Is a Compiler

compiler
/keam'pa1la/
noun

a program that converts instructions into a machine-code or lower-level form so that they
can be read and executed by a computer.
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What Is a Compiler

lexical analysis algebras graph theory
S semantic analysis set theory
- syntax analysis abstract interpretation
proofs encoding




What Is a Compiler

Just-in-Time (JIT) Compiler

browser

’ JS

config.pb
configuration.proto c Forma?‘,bar -
config.cpp

Source-to-Source Cam,bf/er Jugt-in-Time (/IT) Compiler




How Does a Compiler Work
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How Does a Compiler Work

Intermediate Reprecentation (IR)
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How Does a Compiler Work

Moct of Compiler recearch
happens here!
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understand the O/O" « make faster generate the
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What Is MLIR

MLIR
/am al A1 .1/
acronym

Multi-Level Intermediate Representation. A unifying software framework for
compiler development.



MLIR Structure

Value (result) Operation Uce of l/atue Attribute dictionary
/ / [opemua/) (etatic info about operation)
%res:2 = "mydialect.morph"(%input#3) {some.attribute = true, other_attribute = 1.5}

(!'mydialect<"custom_type">) -> (!mydialect<"other_type", !mydialect<"other_type">)

loc(callsite("foo" at "mysource.cc":10:8))
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MLIR Structure

Value (result) Operation Uce of l/atue Attribute dictionary
/ / [opemua/) (etatic info about operation)
%res:2 = "mydialect.morph" (%input#3) {some.attribute = true, other_attribute = 1.5}

('mydialect<"custom_type">) -> (!mydialect<"other_type", !mydialect<"other_type">)

loc(callsite("foo" at "mysource.cc":10:8))

N

Type Source (ocation
(ctatic info about valve)



MLIR Structure

%results:2 = "d.operation"(%arge, %argl) ({
// Regions belong to Ops and can have multiple blocks. Region

-2 [
}) () -> (!d.type, !d.other_type)




MLIR Structure

%results:2 = "d.operation"(%arge, %argl) ({

// Regions belong to Ops and can have multiple blocks.

~block(%argument: !d.type):

Block

~other_block:
| "d.terminator"() [~block(%argument : !d.type)] : ()

Region

-2 [
}) () -> (!d.type, !d.other_type)




MLIR Structure

%results:2 = "d.operation"(%arge, %argl) ({

// Regions belong to Ops and can have multiple blocks. Reghan
A % : id. :
block(%argument: !d.type) . Block
%value = "nested.operation"() ({

}) = () -> (!d.other_type)
"consume.value" (%value) : (!d.other_type) -> ()
~other_block:

| "d.terminator"() [~block(%argument : !d.type)] : ()

-2 [
}) () -> (!d.type, !d.other_type)




MLIR Structure

%results:2 = "d.operation"(%arge, %argl) ({

// Regions belong to Ops and can have multiple blocks. Region
~block(%argument: !d.type): Block
%value = "nested.operation”() ({
// Ops can contain nested regions. Region

"d.op”"() : O -> QO
}) = () -> (!d.other_type)
"consume.value" (%value) : (!d.other_type) -> ()
~other_block:
| "d.terminator"() [~block(%argument : !d.type)] : ()

-2 [
}) () -> (!d.type, !d.other_type)




Little Builtin, Everything Customizable

No fixed set of:
- Operations
- Attributes
- Types

Bring your own anything:
- Aslong as you define and verify semantics
- Group into “dialects”



Representation Matters

#include <math.h> define double @foo(double noundef %08) {

%2 = tail call double @llvm.exp.f64(double %0)
%3 = tail call double @llvm.log.f64(double %2)
ret double %3

}

double foo(double x) {
return log(exp(x));

clang -S -emit-1lvm -03



Representation Matters

#include <math.h> define double @foo(double noundef %08) {

%2 = tail call double @llvm.exp.f64(double %0)
%3 = tail call double @llvm.log.f64(double %2)
ret double %3

}

double foo(double x) {
return log(exp(x));

/0? gX: X ?77

o o o

clang -S -emit-1lvm -03



Representation Matters

e >\fj:i:;§?7/‘
D
define double @foo(double noundef %08) {

ret double %0
IIIII" }

clang -S -emit-1llvm -ffast-math -03

#include <math.h>

double foo(double x) {
return log(exp(x));

}




Representation Matters

LLUM IR has intrincics for ¢ and o R
log, but not for expmT and (591p ﬁq@?

#include <math.h> define double @foo(double noundef %08) {
%2 = tail call fast double @expml(double %0)
%3 = tail call fast double @loglp(double %2)
ret double %3

}

double foo(double x) {

return logip(expml(x));

)

log (1 + x)

log (1 + €-1)= log ¢ = x 777

clang -S -emit-1llvm -ffast-math -03



Representation Matters

In MLIR, thece live in the Math
dialect and are ‘optional’.

func.func @bar(%0 : f64) -> f64 {
%1 = math.expml %0 fastmath<fast> : f64

#include <math.h>

double foo(double x) { %2 = math.log1p %1 fastmath<fast> : f64

return logip(expml(x));

)

log (1 + x)

return %2 : fé64
}




What Can Be Represented

Dialects

48 dialects

“upstream”

‘affine' Dialect

‘amx’ Dialect

‘arith’ Dialect
‘arm_neon' Dialect .
e arith
'ArmSME' Dialect
‘async' Dialect
‘bufferization’ Dialect
‘cf' Dialect

‘complex' Dialect

‘diti’ Dialect

‘emitc’ Dialect

‘func' Dialect

'gpu’ Dialect

‘index' Dialect

‘linalg' Dialect

‘math' Dialect

'mesh’ Dialect

'nvgpu’ Dialect

'nvvm' Dialect

‘omp' Dialect
'pdl_interp' Dialect
math
'polynomial' Dialect
'ptr' Dialect

'quant' Dialect

‘scf' Dialect

‘smt' Dialect

‘tensor' Dialect

'ub' Dialect

'veix' Dialect
'x86vector' Dialect
‘xegpu' Dialect

Builtin Dialect
Oplnterface definitions
SPIR-V Dialect

(TOSA) Dialect
Transform Dialect

Arithmetic operations

arith.addf %a, %b

Mathematical functions (= libm

math.exp %a



What Can Be Represented

Dialects

48 dialects

“upstream”

‘acc’ Dialect
‘affine’ Dialect
"amdgpu’ Dialect
‘amx’ Dialect

“arith’ Dialect
‘arm_neon’ Dialect
arm_sve' Dialect
"ArmSME' Dialect
‘async’ Dialect
“bufferization’ Dialect
‘cf Dialect
‘complex' Dialect
“dlti Dialect

‘emitc’ Dialect
“func’ Dialect

‘gpu’ Dialect
“index’ Dialect

“irdl" Dialect

“inalg’ Dialect
“Ilvm’ Dialect
‘math Dialect
‘memref' Dialect
‘mesh' Dialect
‘mi_program' Dialect
‘mpi' Dialect
“nvgpu' Dialect
‘nvwm' Dialect
‘omp Dialect
“pdl_interp' Dialect
“pdl Dialect
“polynomial' Dialect

‘ptr' Dialect

‘quant! Dialect
‘rocdl' Dialect
‘scf' Dialect

‘shape’ Dialect

‘smt! Dialect
‘sparse_tensor' Dialect

‘tensor' Dialect

“ub Dialect

“veix' Dialect

ector' Dialect

'xg6vector' Dialect

xegpu' Dialect

Builtin Dialect

Opinterface definitions

SPIR-V Dialect

Tensor Operator Set Architecture
(TOSA) Dialect

Transform Dialect

memref

ptr

Multidimensional memory references

A

Pointers



What Can Be Represented

Dialects

‘ace’ Dialect
‘affine’ Dialect
‘amdgpu’ Dialect
‘amx' Dialect
“arith’ Dialect
‘arm_neon' Dialect
‘arm_sve' Dialect
"ArmSME' Dialect

Graph Control flow (goto

‘async' Dialect
‘bufferization’ Dialect
‘cf' Dialect
‘complex' Dialect
“diti* Dialect
‘emitc’ Dialect
‘func' Dialect
'gpu’ Dialect
‘index’ Dialect
T
‘linalg' Dialect
e
. ‘math’ Dialect

48 dialects oA
‘mesh’ Dialect
e
'nvgpu’ Dialect

“upstream”

‘omp’ Dialect

/ cf
'pdl_interp' Dialect
scf Structured Control flow (loops)
‘polynomial Dialect

'ptr' Dialect

'quant’ Dialect

‘scf' Dialect

‘smt' Dialect

‘tensor' Dialect

'ub' Dialect

'veix' Dialect

'x86vector' Dialect

‘xegpu’ Dialect

Builtin Dialect

Oplinterface definitions

SPIR-V Dialect

(TOSA) Dialect

Transform Dialect



What Can Be Represented

linalg Structured Linear Algebra

linalg.generic {
iterators = ["parallel", "parallel", "reduction"]
indexing_maps = [

affine_map<(i, j, k) -> (i, k),

affine_map<(i, j, k) -> (k, j),

affine_map<(i, j, k) -> (i, j)

48 dialects ]

pg } ins(memref<?x?xf32>, memref<?x?xf32>)
“ ” T outs(memref<?x?xf32>) {
upstream — "bbB(%a: 32, %b: £32, %c: f32):

ot s %0 = arith.mulf %a, %b : f32

%1 = arith.addf %0, %c : f32

e yield %c : 32

‘scf' Dialect }
sl ialec
v

Tensor Arithmetics (ML-style)

tosa.matmul

s or Set Architecture
(TOSA) Dialect
Transform Dialect



What Can Be Represented

Dialects

‘affine' Dialect
‘amx’ Dialect
‘arith’ Dialect
‘arm_neon' Dialect N N N
mesh Distributed Computation
'ArmSME' Dialect
‘async’ Dialect
‘bufferization’ Dialect
‘cf' Dialect
‘complex' Dialect
‘diti’ Dialect
‘emitc’ Dialect
‘func' Dialect
'gpu’ Dialect
‘index' Dialect
“linalg' Dialect
. ‘math' Dialect

48 dialects e
'mesh’ Dialect
'nvgpu’ Dialect

“upstream”

‘omp' Dialect

‘pdl_interp’ Dialect -
mpi MPI
‘polynomial' Dialect

‘ptr' Dialect

‘quant’ Dialect

'scf' Dialect

‘smt' Dialect

'tensor" Dialect

'ub' Dialect

'veix' Dialect

'x86vector' Dialect

‘xegpu' Dialect

Builtin Dialect

Oplinterface definitions

SPIR-V Dialect

(TOSA) Dialect

Transform Dialect



What Can Be Represented

Dialects

48 dialects

“upstream”

‘affine’ Dialect

‘amx' Dialect

‘arith’ Dialect
‘arm_neon' Dialect
acce
'ArmSME' Dialect
‘async' Dialect
‘bufferization' Dialect
‘cf' Dialect

‘complex' Dialect
'dlti' Dialect

‘emitc’ Dialect

‘func' Dialect

‘gpu’ Dialect

‘index’ Dialect

"linalg' Dialect

'math' Dialect

'mesh’ Dialect
‘nvgpu’ Dialect
'nvvm' Dialect

‘omp' Dialect
‘pdl_interp’ Dialect
openmp
‘polynomial Dialect
‘ptr' Dialect

'quant’ Dialect

'scf' Dialect

‘smt' Dialect

'tensor" Dialect

'ub' Dialect

'veix' Dialect
'x86vector' Dialect
‘xegpu' Dialect
Builtin Dialect
Oplinterface definitions
SPIR-V Dialect
(TOSA) Dialect

Transform Dialect

OpenACC “pragmas”

OpenACC

OpenMP “pragmas”

OpenMP




What Can Be Represented

gpu GPU programming abstraction

func.func @no_args(%sz : index) {
// Normal (host) function.
gpu.launch blocks(%bx, %by, %bz)
in (%grid_x = %sz, %grid_y = %sz, %grid_z = %sz)
threads(%tx, %ty, %tz)
in (%block_x = %sz, %block_y = %sz, %block_z = %sz) {

48 dialects // GPU kgrnel. Code motion is allowed between the two.
gpu.terminator
= }
“upstream” o : return

‘pdl' Dialect
‘polynomial' Dialect
‘ptr' Dialect

‘quant! Dialect
‘rocdl' Dialect

‘scf' Dialect

nvgpu CUDA abstraction
(we also have ROCm equivalent)

nvgpu.tma.async.load

nvgpu.mma.sync

s or Set Architecture
(TOSA) Dialect

Transform Dialect



What Can Be Represented

48 dialects

‘upstream”

Dialects
‘ace’ Dialect
‘affine Dialect
‘amdgpu’ Dialect
‘amx Dialect
‘arith Dialect
‘arm_neon’ Dialect
‘arm_sve' Dialect
"ArmSME' Dialect
‘async' Dialect
“butferization" Dialect
‘cf' Dialect
‘complex' Dialect
“diti Dialect
‘emitc’ Dialect
“func' Dialect
‘gpu’ Dialect
‘index' Dialect
“irdl" Dialect
‘linalg’ Dialect
“llvm' Dialect
‘math’ Dialect
‘memref' Dialect
‘mesh’ Dialect
‘ml_program' Dialect
‘mpi' Dialect
'nvgpu’ Dialect
‘nvvm'’ Dialect
‘omp' Dialect
“pdl_interp' Dialect
“pdl Dialect
‘polynomial' Dialect
‘ptr' Dialect
‘quant’ Dialect
‘rocdl' Dialect
‘scf Dialect
‘shape’ Dialect
'smt' Dialect
sparse_tensor' Dialect
‘tensor' Dialect
‘ub’ Dialect
“eix' Dialect
"vector' Dialect
'x86vector' Dialect
‘xegpu' Dialect
Builtin Dialect
Oplnterface definitions
SPIR-V Dialect
Tensor Operator Set Architecture
(TOSA) Dialect
Transform Dialect

100s

“downstream”

Users of MLIR
I alphabetical rder below:
Accera

code. With Accer

hand-wit i

Fyinon lbrary and supports cross1
Beaver

Beaver is an MLIR frontend in Eliir
features, Beaver provides a simple,

Bror2mLIr: A Format

HEIR

MLIR-based

Soagofor comping ragrams that o
complratens t be partomad diect
rosarving cata prvacy thoughout

Biing upon e fourdaton o VLR

Nod Distributed Runtime: Asynchronous fine-grained op-level
parallel runtime

for developing

: mple, we inferenc i
oo rpreseiog n e BN cluster while exploting fne-grained op-level paralllism.
Seniicaton Gorman,and has boan s IREE ONIEMILIR
Catalyst ST AT e o Notk Exchang (NN whichis an cbon
Ctaats an AT comptor o310 ONNXCMLIR i 3 MLIR-based compier forrewriing a
o B o ! machines, and B0 Systam 2.
s fori et specifically re g ONNX Noutal Network Models Using VLR

integration nto the Pytho

Catalyst i comes wih 1 : Kokkos OpenXLA
e x o g MR

GPUs and QPUS. appiications in a hardware agnosticw ) vt

» " leading effort i the US to prepare the PLAIAML
CIRCT: Circuit IR Com 1, mwemms‘sm,mu“.p‘e” PlaidMLis. i models across various
The CIRCT projectis an (experimer applications in a p b Gl

Vet brars An MLIR-based JIT and AOT compiler

Concrete: TFHE COM} 1o 1R 1o support ted and A ey for DL and non-DL computations It can
equivalent Lingo DB:

Concrete is an open-source framey

Polygeist: C/C++ frontend and optimizations for MLIR

makes writing
HEis a

¢

LingoDB

flexibity and extensil
relatior

Poly Raising C to Polyhedral MLIR and the GPU Polygeist paper

pr

to eff
instance, Concrete ML is buift o to
learning use cases.

DSP-MLIR: A Framew

LingoDB can perform cross-domain ¢

its flexibilty enables sustainable sups |

LingoDB heavily builds on the MLIR c:
without much latency.

High-Performance GPU-to-CPU T

Pylir

Py d-of-Time i tuses MLR
sy

of i
Garbage colector support

n MLIR MARCO: Modelica Adv pcr

DSP-MLRL A fort i T
s‘mummn of The thmic and har

framework

supy
(DCT, FET. IFFT), and athr sanal 5

des\gn-d

SOPHGO TPU-MLIR

Enzyme. General Autc

by m
o s oo fantons

ML for SOPHGO TRU. hitps:/anivors]
shar 50t

w MLIR-AIE: info Substrait MLIR
Sk e o e general MUR-AE s a i = Substalt
Brooct uhich uses Enzyme o dife. ShMOMA block. Backend cods gent TensorFlow
Codegen for Jax. el abstractions onabling HGher-0y eomes vt . iR
Firefly: A new compile MLIR-DaCe: Data-Ceni corerter aunizsten, ).
Fief s notan  complr, bt a1 WLR-DaC s proctiming oo Tenstorrent MLIR Compiler
pler aina it Tenstorent A
e mpiement | accel o
The pr « Giatect MU R o et
e v MLIR-EmitC TFRT: TensorFlow Runtime
" nsle TFRT.
Elang ook 00 Tensorrion medt Torch-MLIR
The at The Torch-ML ”
e i o ramage he 5. The CHC detoct ol aswlla the T8 Toc
subsequently accepted into the LL\ the MLIR-EmitC repository. %9
compileris modeled using MR- 1 5 Triton
Mojo Tonga e imot
Mojos butaso
> it waher ising DSLs.

of
aims to be a strict superset of Pythor

immediately for long-tail ecosystem e YAS
VaST|

VAST: C/C++ frontend for MLIR
ibrary for VAST provides a
analyses. Using the MLIR

infrastructure, VAST provides a

Project Verona They are

https://mlir.llvm.org/users/
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How to Handle Generality: Traits

Trancformations reason about

traite, not individual operations

Traits: [Associative, Commutative, Pure,

void transformation(Qpération *op) {
SameOperandAndResultType]

if (op->hasTrait<Associative>()) {

%3 = arith.addi %1, %2 Value operand = op->getOperand(0);
%4 = matrix.multiply %5, %6 op->setOperand(@, op->getOperand(1));
op->setOperand(1, operand);

Traits: [Associative, AntiCommutative, Pure, ... }
LoopDecomposable] }



How to Handle Generality: Interfaces

Ifaces: [ConditionallyAssociative, ... —_— s R “ -
ConditionallyCommucative] bool AddFOp::isAssociative() “override” {

return getFastMathAttr().isAllowReassoc();
Traits: [Asseedative, Commutative, Pure,
SameOperandAndResultType] b

%3
%4

arith.addf %1, %2

matrix.multiply %5, %6

Traits: [Associative, Pure,
LoopDecomposable]

Ifaces: [AntiCommutative] — Value MatrixMultiplyOp::buildInverse(OpBuilder &b, ...)
“override” {

return b.create<MatrixInverseOp>(...).getResult();






Why Bother? Climate Model Domain Compilers

Domain-Specific Multi-Level IR Rewriting for GPU: DSL .
The Open Earth Compiler for GPU-accelerated Climate &
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func @sum(%in : !stencil.field<?x?x?xf64>, %out : !stencil.field<?x?x?xf64>) {

stencil.assert %in ([-4, -4, -4]:[68, 68, 68]) : !stencil.field<?x?x?xf64>
stencil.assert %out ([-4, -4, -4]:[68, 68, 68]) : !stencil.field<?x?x?xf64>
%0 = stencil.load %in : (!stencil.field<?x?x?xf64>) -> Istencil.temp<?x?x?xf64>
%1 stencil.apply (%argd = %0 : !stencil.temp<?x?x?xf64>) -> lstencil.temp<?x?x?xf64> {
%2 = stencil.access %arg@[1, 0, 0] : (!stencil.temp<?x?x?xf64>) -> f64
%3 = stencil.access %arg@[-1, 0, 0] : (!stencil.temp<?x?x?xf64>) -> f64
%4 = addf %2, %3 : f64
stencil.return %4 : f64

— define storage shapes

~—stencil operator

}
stencil.store %1 to %out ([0, @, ©]:[64, 64, 64]) : !stencil.temp<?x?x?xf64> to !stencil.field<?x?x?xf64>

return ™\ define output domain

example range boundary stencil access

- s : . %0 ] il. ?x?
[-1,0]:[3,2] @ iniiér domaiii ] stencil.temp<?x?xf64>

@ stencil access !
i=1, j=1

3,21 %010,01 = ¢ .\ %0 [1, 0]

['11 0]

origin [0, 0] %0 [0, -1]

https://dl.acm.org/doi/pdf/10.1145/3469030



https://dl.acm.org/doi/pdf/10.1145/3469030

Why Bother? Climate Model Domain Compilers

Domain-Specific Multi-Level IR Rewriting for GPU:
The Open Earth Compiler for GPU-accelerated
Climate Simulation

TOBIAS GYSI and CHRISTOPH MULLER, ETH Zurich, Switzerland
OLEKSANDR ZINENKO, Google, France

STEPHAN HERHUT, Google, Germany

EDDIE DAVIS, TOBIAS WICKY, and OLIVER FUHRER, Vulcan Inc, USA
TORSTEN HOEFLER, ETH Zurich, Switzerland

TOBIAS GROSSER, University of Edinburgh, UK

Speedup 128-f32 mmm 256-f32
Most compilers have a single core intermediate representation (IR) (e.g., LLVM) sometimes complemented Speed u p 1 2 8-f32 - 2 5 6-f3 2

X:&E :’:S;,:::lv defined ?R llliilv.)i;:lags(l;;‘tlilurc% Th:s IRis (ommonlv ln:!wﬂ lrxﬁt:x;it1::,2:,T,::iil:::,:::it::ﬁi 0 1 2 8_f6 4 2 5 6_f64 1 2 8 'f64 - 2 5 6'f6 4

analysis to recover the missing information. In contrast, multi-level rewriting instantiates a hierarchy of ™ o

dialects (IRs), lowers programs level-by-level, and performs code transformations at the most suitable level ~N @© ooco,\ ,\

We demonstrate the effectiveness of this approach for the weather and climate domain. In particular, we < e 24 1n nging .@w@ '\4 R m"< i g
develop a prototype compiler and design stencil- and GPU-specific dialects based on a set of newly introduced I~ Naa 159 ! H et

design principles. We find that two d pecific lines of code) realized on top of LLVM's s ""_‘H

o)
> © © ©m o . w. st
extensible MLIR compiler suffice to i f-the-art solutions. In essence, multi- 2 0 et A rEE - B e -
level rewriting promises to herald the age of specialized compilers composed from domain- and target-specific - ™M B an o o gt b 5
dialects on top of a shared infi — EhEAE] =S 1 1
CCS Concepts: - Software and its engineering — Compilers; Domain specific languages; - Applied 1
computing - Earth and atmospheric sciences;
Additional Key Words and Phrases: Weather and climate, stencil computations, intermediate representations 0- 0

Aye. P 9. Uz g Tl D5
(o] 715 115 ) 02 lop) ,Oe \9/~ ,(— ’7)
1/51( Q S”’eg @e,) q f/ » 0\' o 7 Q/ \ g,.ea Gq s Q &9/)

%S%
A,
S‘/V

Tobias Gysi also with Google.

Tobias Grosser also with ETH Zurich.

The work done at ETH Zurich has received funding from the European Research Council (ERC) under the European

Union's Horizon 2020 programme (grant agreement DAPP, No. 678880), the Swiss National Science Foundation under the

Ambizione programme (grant PZ00P2168016), and ARM Holdings plc and Xilin Inc in the context of Polly Labs.

s O € Mk B A Bkt Sehisnt el rmotseces Over STELLA (COSMO) Over Dawn (FV3)
{christoph.mueller, htor}@int.ethz.ch; O. Zinenko, Google, France; email: zinenko@google.com; S. Herhut, Google, Ger-

‘many; email: herhut@google.com; E. Davis, T. Wicky, and O, Fuhrer, Vulcan Inc, USA; emails: {EddieD, TobiasW, OliverFj@

vulcan.com; T. Grosser, University of Edinburgh, UK; email: tobias grosser@ed.ac.uk.

On V100-SXM2

This work is licensed under a Creative Commons Attribution International 4.0 License

© 2021 Copyright held by the owner/author(s).
1544-3566/2021/09-ARTS1 $15.00
hitps://doi.org/10.1145/3469030

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 4, Article 51. Publication date: September 2021

https://dl.acm.org/doi/pdf/10.1145/3469030



https://dl.acm.org/doi/pdf/10.1145/3469030

Why Bother? CFD Domain Optimization

Code Generation for In-Place Stencils

Mohamed Essadki Bertrand Michel Bruno Maugars
ONERA ONERA ONERA
Chatillon, France Chatillon, France Chatillon, France
fr bertrand.mi e b
Oleksandr Zinenko Nicolas Vasilache Albert Cohen
Google Google Google
Paris, France Zirich, Switzerland Paris, France
Abstract February 25~ March 1,2023, Montréal, OC, Canada. ACM, New York,

Numerical simulation often resorts toiterativ in-place sten-
cils such as the Gauss-Seidel or Successive Overrelaxation

NY, USA, 12 pages. hitps:/doi org/10,1145/3579990. 3580006

1

Writing high p
of such stencils requires significant effort and time; it also

Wejase inereted 1 the paralelisation and optmtation
of

itself. While automated code generation is a mature technol-

ogy for image processing stencils, convolutions and out-of-

place iterative stencils (such as the Jacobi method), the opti-

‘mization of in-place stencils requires manual craftsmanship.
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implemented in the MLIR framework, tensor abstractions
incrementally refined and lowered down to parallel, tled,
fused and vectorized code. We used our generator to imple-
t a realistic, implicit solver for structured meshes, and

lemonstrate results competitive with an industrial compu-
tational fluid dynamics framework. e also compare with
stand-alone stencil kernels for dense tensors.
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(cFD) npp].lnzlmni and
‘more specifically lrnphul finite-volume numerical methods
to solve differential equations. This consists in Sscet g
the space domain into small cells representing the conser-
vative fields of the simulation (mass density, momentum,
gy, etc, where the volume value of each field is aver-
aged over a given cell). Then, at every step of the simulation,
a solver based on the implicit method (for faster conver-
‘gence and scalability) proceeds by rewriting the differential

equations in the form of a large and sparse linear system
Ax=b (1)

where A is a square matrix of size m X m, x and b are two

ical solution of the physical fields. An implicit CFD solver
can typically be split in two main phases

1. first compute the vector b, iterating over the faces of

the cells to compute a numerical flux [34, 36] which
can be considered as a function of the two solutions
in adjacent cells separated by a common face;

2. then, rather than explicitly updating the fields in the
cell solve the linear system using an iterative method
like Successive Overrelaxation (SOR), a variant of the

Gauss-Seidel method [12, 42].

It remains an open problem to design and implement a
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solvers using sate-of-the-art methods like SOR. Unlike the
Jacobi iterative method and all stencil codes occurring in
image processing and neural networks, SOR is an in-place
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vectorization of in-place stencils require
a wavefront schedule. This incurs additional control flow
and indexing overheads and higher complexity in model-
ing locality-enhancing transformations such as tling (cache
blocking) and fusion. It is important to optimize such in-
place stencils, since in typical scenarios Gauss-Seidel and
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bstraci—We present new compilation flow that 1
conncets the MLIR o ntraircture 1o cuting edge -~
capable of comvering a broad range of cxisting codes into = Clng = Fronend = ProOpt St it —)
comersion between MLIR and OpenScop exchange forma. The o L
Py MLIR mtrmedal reraentaon caufog g pr a1 L0 »}’Jf.‘,‘. A

...) loop constructs and n-D arrays embedded

signment (SSA) substrate enables an_ nprecedented
Comibinati of SSA-bica and polyhedral opimtsaiont. We

mations: statement splitting and reduction parallelzation. Our
evaluation

demonstrates that Polygeist outperfo

234%) and parallel mode (9.47x vs 326x, 7.54x) thanks to the.
representation and transformations.

1. INTRODUCTION

Improving the effciency of computation has always been

one of the pine guls of compuling. Pogram erfonance

improved significantly by reaping the benefits of par-

ity Lenpors axd ol sy, o pertomarce

vant progam asformtions e patiul

dious and challenging when targeting modern multicore A

ind GPUs with decp memory hirarchien and paralicion, and
are often performed automatically by optimizing compilers.

‘The polyhedral model enables precise analyses and a rela-
tively easy specification of transformations (loop restructuring,
automatic paralelization, etc.) that take advantage of hardware
performance sources. As a resul, there is growing evidence
that the polyhedral model is one of the best frameworks for
elfcint wformaion of compui inense prograns .

propamming scosleto gbtecees B

m. [6] Consequenty, the compiler community bas fos

o ety and optmse . of he

program that can be represented witin e polyhedral model

(commonly referred to as stati-control parts,or SCoP's). Such
tools tend to fall into two categorics.

Compiler-based tools lke Polly 7] and Graphite [8] detect
and transform SCoPs in compiler intermediate representations
(IRs). While this offers seamless infegration with rest of the.
compiler, the lack of high-level structure and information hin-
ders the tools” abiliy to perform analyses and transformations.
“This structure needs to be recovered from optimized IR, often

* Equal contriion,

Fig. 1. The Polyscst compllation flow consists of 4 stages. The fontead
o cmit MUIR SCF dinlct (Secton
Atine dilct and pre opimized (5.

© post
5 2 s 0
CIVM R for frheroptimiatin and ey gersion by LV

impertectly or at a significant cost [9]. Morcover, common
compiler optimizations such as LICM may interfere with the
process (I0). Finally, low-level IR often lack constructs for,
.. paralllism or reductions, produced by the transformation,
which makes the flow more complex.

Soure-10-source compilers such as Plto [[1], PoCC [12]
and PpCG [5) operate directly on C or -+ code. While this
can effectively leverage the high-level information from source
code, the effectiveness of such tools s ofien reduced by the
lack of enabling optimizations such as those converting haz-
ardous memory loads into single-assignment virtual registers
Furthermore, the transformation results must be expressed in
€, which is known (o be complex [13], [14] and is also
missing constructs for, e.g., reduction loops or register values
no backed by memory storage.

“This paper proposes and evaluates the bencfis of a polyhe-
aral compilation flow, Polygeist (Figure 1) that can leverage
both the high-level structure available in source code and the
fine-grained control of compiler optimization provided by low-
Ievel IR It builds on the recent MLIR compile infrastructure
that allows the interplay of muliple abstzaction levels within
the same representation, during the same transformaions (15].
Intermixable MLIR abstractions, or dialects, include high-

1 constructs such as loops, parallel and reduction pat-
terns; low-level representations fully covering LLVM IR [16};
and & polyhedral-inspired representation featuring loops and
memory accesses annotated with affne expressions. Morcover,
by combining the best of source-level and IR-level t0ols in
an end-o-end polyhedral flow, Polygeist preserves highlevel
information and leverages them 1o perform new or improved

7N

Cor C++ Clang AST MLIR SCF MLIR Affine

- Clang —> Frontend - Pre-Opt —» Stmt Split
> Stage 1 2 Stage 2 : 4
Binary LLVM IR MLIR Parallel ~ OpenSCoP

< LLVM - Backend = Post-Opt - Polyhedral

Stage 4 i Stage 3

Connecting C and C++, and any MLIR loops,
to pre-existing Polyhedral optimization tools
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missing constructs for, e.g., reduction loops or register values
no backed by memory storage.

“This paper proposes and evaluates the bencfis of a polyhe-
dral complation flow, Polygeist (Figure 1), that can leverage
both the highlevel structure available i source code and the
fine-grained control of compiler optimization provided by low-
Ievel IR It builds on the recent MLIR compile infrastructure
that allows the interplay of muliple abstzaction levels within
the same representaion, durin the same transformations [15]
Intermixable MLIR abstractions, or dialects, include high-
evel constzucts such as loops, parallel and reduction pat-
ters; low-level epresentations ully covering LLVM IR [16];
and & polyhedral-inspired representation featuring loops and
memory accesses annotated with affne expressions. Morcover,
by combining the best of source-level and IR-level t0ols in
an end-to-end polyhedral low, Polygeist preserves high-level
information and leverages them o perform new of improved
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L. INTRODUCTION

The increasing complexity of hardware resulting from
the ongoing trend for heterogencous systems has made
difficult for general-purpose compilers (o generate efficient
code automatically [1). One of the main issues is the mismatch
between the low level of abstraction at which general-purpose
compilers operate and the various high-level abstractions for
computation required by today’s applications (2] Although
highlevel programming languages allow for the specification
of high-level operations, this information is often not captured
by the low-level intermediate representation (IR) of general-
purpose compilers or lost early in the compilation process
during lowering 3]

‘Domain-specific languages (DSL) and compilers attempt
to capuure and explicitly preserve high-level information
throughout the compilation process and have been employed
successfully 1o generate efficient code for modem hardware [4],
[5). However, such languages commit o a limited set of isolated

iy, &

Fig. 1: Multi-Level Tactics lifts general-purpose languages to

higher-abstraction levels to enable effective domain-specific
compilation via progressive lowering.

abstractions and domain-specific optimizations, resulting in

poor interoperability, limited reusability of software compo-

nents, and few opportunities for inter-domain optimizations [6].
Muli-level intermediate representations explicity allow for

the co-existence of multiple abstrictions within the same com-

pilation framework with interoperable representations, breaking
the isolation between domains and enabling comprehensive
optimizations. During compilation, the source program’s high-
level representation s progressively optimized and transformed

to lower-level abstractions, until reaching a low-level, general-

purpose representation for code generation [7].

Multi-level frameworks solve many ssues of DSLs, but
the optimizations in progressive lowering compilation scheme
erucially rely on the adequate initial representation of the source

ails 1o apply. However, providing an adequate high-level input
representation may not always be possible. General-purpose
languages not being semantically rich enough 1o preserve the
right level of information enter the lowering pipeline at a very
low level, thus precluding most, if not all, domain-specific
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L. INTRODUCTION

The increasing complexity of hardware resulting from
the ongoing trend for heterogencous systems has made it
difficult for general-purpose compilers (o generate efficient
code automatically [1). One of the main issues is the mismatch
between the low level of abstraction at which general-purpose

compilers operate and the various high-level abstractions for
computation required by today’s applications (2] Although
highlevel programming languages allow for the specification
of high-level operations, this information is often not captured
by the low-level intermediate representation (IR) of general-
purpose compilers or lost early in the compilation process
during lowering 3]

‘Domain-specific languages (DSL) and compilers attempt
to capuure and explicitly preserve high-level information
throughout the compilation process and have been employed
successfully 1o generate efficient code for modem hardware [4],
[5). However, such languages commit o a limited set of isolated

Fig. 1: Multi-Level Tactics lifts general-purpose languages to
higher-abstraction levels to enable effective domain-specific
compilation via progressive lowering.

abstractions and domain-specific optimizations, resulting in
poor interoperability, limited reusability of software compo-
nents, and few opportunities for inter-domain optimizations [6].

Muli-level intermediate representations explicity allow for
the co-existence of multiple abstrictions within the same com-
pilation framework with interoperable representations, breaking
the isolation between domains and enabling comprehensive
optimizations. During compilation, the source program’s high-
level representation s progressively optimized and transformed
to lower-level abstractions, until reaching a low-level, general-
purpose representation for code generation [7].

‘Multi-level frameworks solve many issues of DSLs, but
the optimizations in progressive lowering compilation scheme
erucially rely on the adequate initial representation of the source
program. If the initial representation is below the required level
of abstraction for 4 given optimization, the optimization simply
ails 1o apply. However, providing an adequate high-level input
representation may not always be possible. General-purpose
languages not being semantically rich enough 1o preserve the
right level of information enter the lowering pipeline at a very
low level, thus precluding most, if not all, domain-specific
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programs, includin these very porability frameworks, remain
writien in CUDA|
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fensor cores, etc. Unfortunately, the pursuit of higher perfor.  WPHE the CUDA programming model and syntax have
manee and ower costs have ed 1 a simifiant divensfcation of Temained relatively stable over time, the underlying GPU
architec even from the same vendor. This creates  hardware has evolved significantly, adding many new features

need for performance portability across different GPUs,  and instructions. For example, earlier versions of programmable
‘specially important for programs in a particular pr g

g NVIDIA GPUs used “half warps” o 16 threads for scheduling

and had a limitation of 1024 threads running concurrently
wdware unit while modern GPUs use “full warps” of

i rmanc; on a ha
‘appropriately to the available hardware resources such as fast 32 and allow up (0 2048 threads per hardware unit. Similar
memory and_ registers, letalone not using. newer advanced  changes can be observed i the amount of avilsble low.latency

propose & o
Gegacy) CUDA programs for modern machines by sutomatically

‘memory and registes. This trend is even more important when

" considering GPUs of a different vendor, like AMD, which

operate in “wavefronis” of 64 threads and allow up (o 4096

d
the amount of memory and regiser resources it requires. By Ureads per hardware unit

Even when GPU kernels written in CUDA appear (o run

10 also target AMD GPUs by performing automatic transation o, nesger NVIDLA GPUs, they may ofien fail o reach similar

from CUDA and simultaneously adjust the program granularity
10 it the size of target GPUs,
Combined with autotuning asisted by the platform-specific

uilization as the Kernels are incorrectly sized for the target
architecture. However, this may be avoided through skillful

compiler, ur approach demonstrates 27% gsoman spesdp on ¢ of the programming model by writing CUDA programs

\MD GPUs executing the same CUDA program.
L. INTRoDUCTION

Aceelerators like GPUS remain the hardware target of choice
for performance-critical software. Achicving high performance

»
. that adapt o different numbers of concurrent threads. But even
A and

programs with this flexibility do not permit control of the
amount of allocated “shared'” memory between several threads
in s group or the smount of registers used (which is proportional
10 the number of threads). Both of these characteristis have
 dramatic impact on the overall performance. These sizing
problems are often amplified when porting a program o 3 GPU
of a different vendor, letalone the often non-trivial engincering

on these accelerators requires programmers to effectively cffort of porting itslf
leverage a peculiar programming model, most often exposed as 1 this paper, we propose a compiler-based mechanism to

C++ language extensions such as CUDA for NVIDIA GPUs
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of the program including the amount of work performed by
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