

Optimisation topologique de miroirs et leurs supports

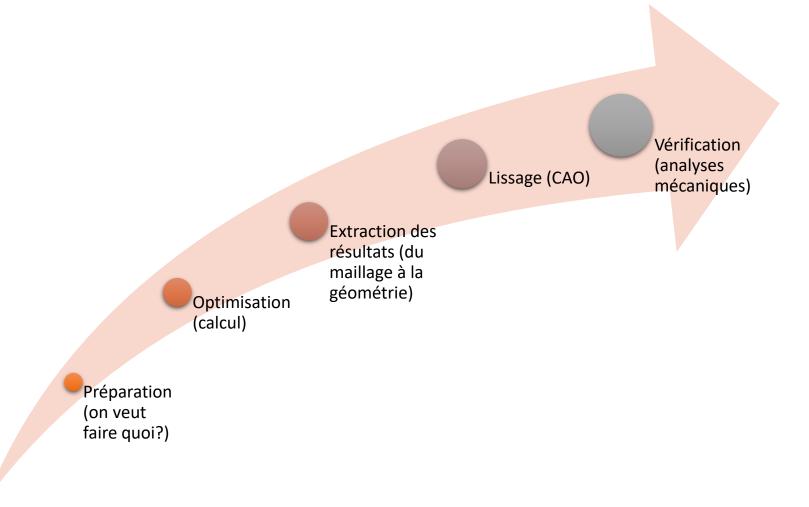
ANF MECA2030

Clémence de Jabrun - IAS

- Développement de bancs optiques pour des observation spatiales
- Problématiques :
 - Masse
 - Alignement optique
 - Thermique

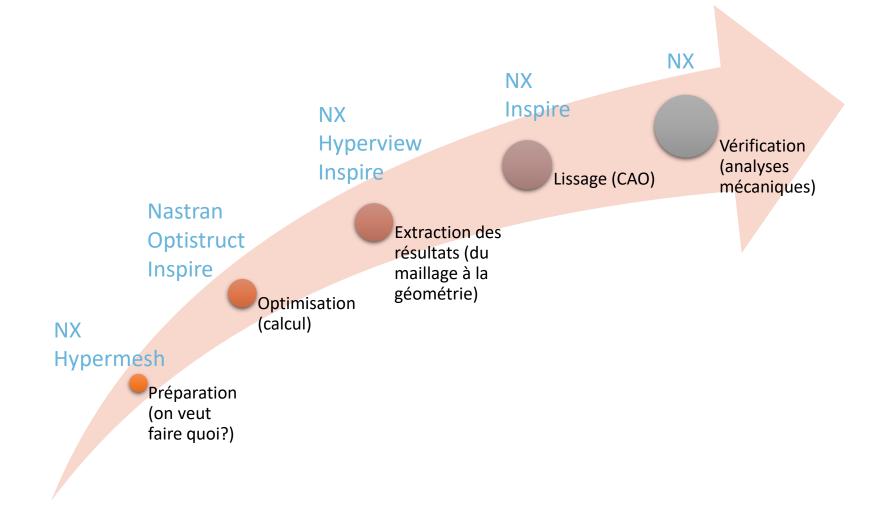
Optimisation topologique

- Pourquoi l'optimisation topologique?
 - Mettre la bonne quantité de matière au bon endroit pour la bonne raison
 - Propose des formes non conventionnelles => Fabrication additive

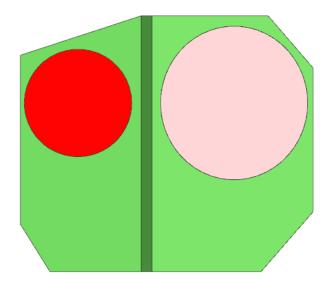


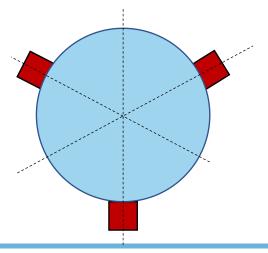
Fabrication additive

- Pourquoi utiliser la fabrication additive ?
 - Conception plus « libre » que la fabrication soustractive
 - Mutualiser les fonctions
 - Réduire le nombre d'interfaces



Déroulé d'une optimisation


Déroulé d'une optimisation

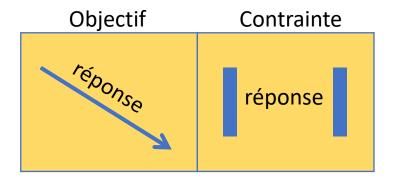


Le cadre de l'optimisation

- >> Espace de design
- >> Espace de non-design
 - Interfaces
 - Zones fonctionnelles
- >> Type de solution ? (statique, modale ?)
 - Chargements et contraintes
- >> Symétries et conditions de fabrication

Les paramètres d'optimisation

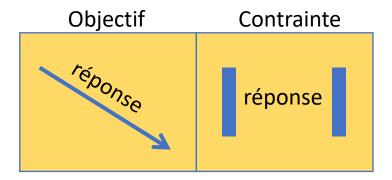
- >> Objectif


 fonction à minimiser ou maximiser
- >> Contraintes d'optimisation

Les paramètres d'optimisation

- >> Objectif

 fonction à minimiser ou maximiser
- >> Contraintes d'optimisation



Les paramètres d'optimisation

- >> Objectif

 fonction à minimiser ou maximiser
- >> Contraintes d'optimisation

Les réponses

- DRESP1 issue du calcul (masse, raideur, déplacement, contrainte...)
- DRESP2 calculs simples entre deux réponses
- DRESP3 appel à un programme extérieur

Les outils d'optimisation

Nastran (SOL200) - Optistruct (Altair)

- → Nécessite un maillage
- → Reconstruction géométrique à partir des surfaces des éléments (extraction IGES)

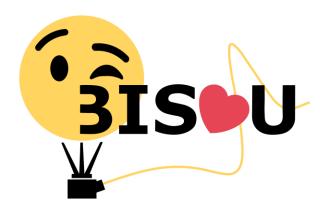
Inspire (Altair)

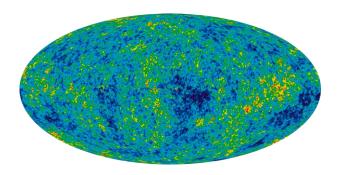
- → Basé sur la CAO
- → Lissage inclus dans le logiciel, plutôt automatique

Méthodologie mise en place

- Définir la géométrie à optimiser
 - Espace de travail
 - Zones utiles (surfaces optiques, zones d'interfaces)
- Définir l'objectif et les contraintes d'optimisation
 - Masse
 - Raideur
 - Gradient thermique

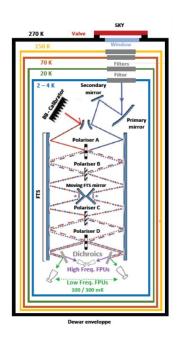
Optimisation




Lissage des résultats

Vérifier par calcul

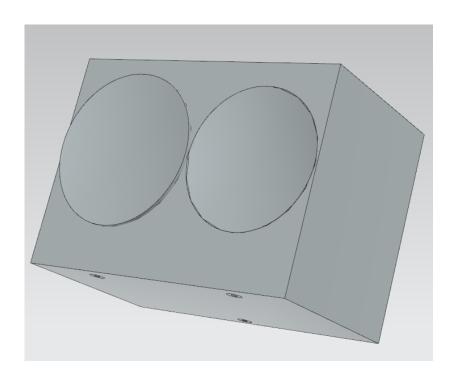
BISOU - FTS



FTS – plusieurs miroirs

Instrument cryogénique

- Paires de miroirs



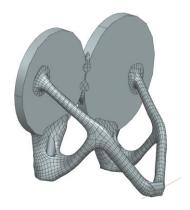
Optimisation topologique

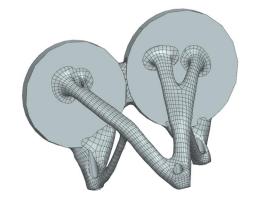
- Conditions aux limites :
 - Encastrement des points d'interface

Choix des contraintes/objectifs

Optimisation topologique

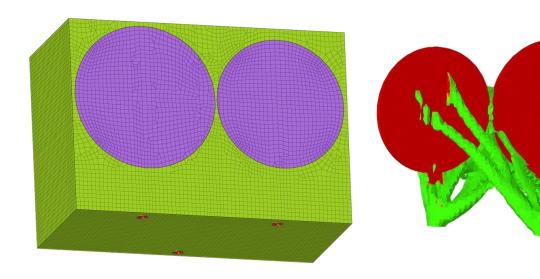
- Conditions aux limites :
 - Encastrement des points d'interface
 - 6 subcases (spatialisable) :
 - 100g sur X
 - 100g sur -X
 - 100g sur Y
 - 100g sur -Y
 - 100g sur Z
 - 100g sur -Z
- Choix des contraintes/objectifs
 - Masse / Raideur



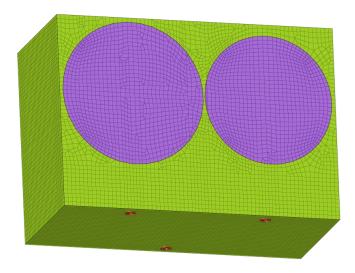


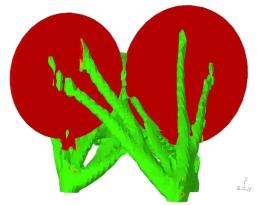
Résultats - Inspire

	Cas 1	Cas 3	
Objectif	Maximiser la raideur	Minimiser la masse	
Contraintes	Masse maximum de 500g	1 ^{er} mode propre > 1500 Hz	
Masse (g)	408	407	
Déplacements max (µm)	112	12	
Contraintes max (MPa)	28	12	
1 ^{er} mode (Hz)	592 1453		

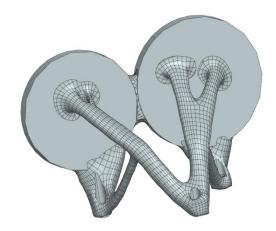


Résultats - Optistruct





Conclusion – optim topo



Lissage, étape la plus complexe

Optimisation => temps de calcul peut être grand

Taille des branches limités par la taille de maille

Les contraintes de la fabb add.

Les contraintes de la fabb add.

 Matière choisie : AlSiMg7

Propriétés mécaniques seion le jeu de paramètres AlSi10Mg_030_SpeedM291_110 / AIF357_060_FlexM400_100

	Brute de fabrication		T5'	T5**	
	30µm	. 60μm	30µm	60µm	
Résistance à la traction (Mpa)					
Direction horizontale (XY)	408	399	435	-	
Direction verticale (Z)	414	397	450	430	
Module d'Young					
Direction horizontale (XY)	85	92	74	-	
Direction verticale (Z)	95	88	74	67	
Limite d'élasticité (Rp 0,2% ; Mpa)					
Direction horizontale (XY)	250	263	314	-	
Direction verticale (Z)	209	263	285	290	
Allongement à la rupture (%)					
Direction horizontale (XY)	9	9	8,5	-	
Direction verticale (Z)	13	7	6	4	
Conductivité thermique (W/m.K)					
Direction horizontale (XY)	140	140	-	-	
Direction verticale (Z)	140	140	-	-	
		!		!	

Polissable Savoir-faire Bonne tenue mécanique Léger Bon conducteur

** 75

Viellissement à 165°C pendant 10h + refroidissement à l'air.

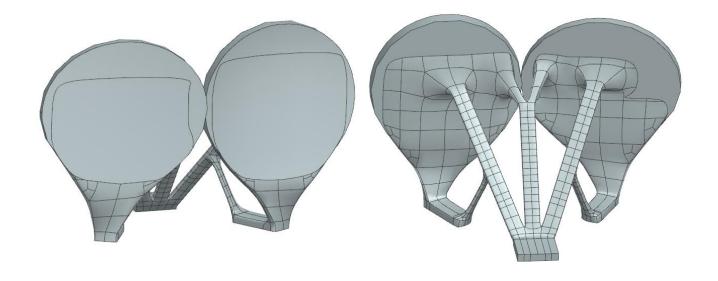
Ces caractéristiques mécaniques sont issues des études VOLUM-e.

Technologie de fusion :

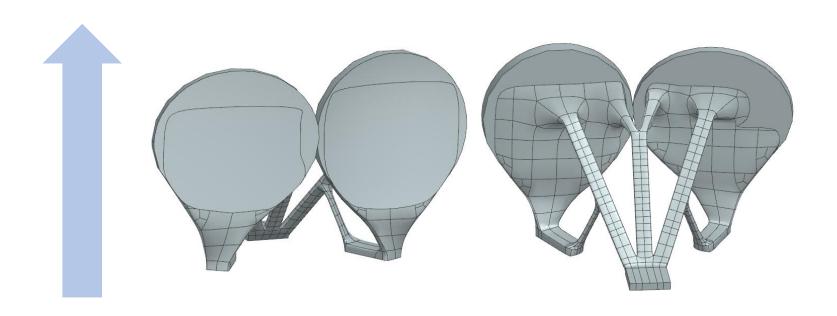
DMLS (Direct Metal Laser Sintering) → Fusion laser sur lit de poudre

Choix d'un design sans supports

→ La pièce doit s'auto-porter


3d Natives

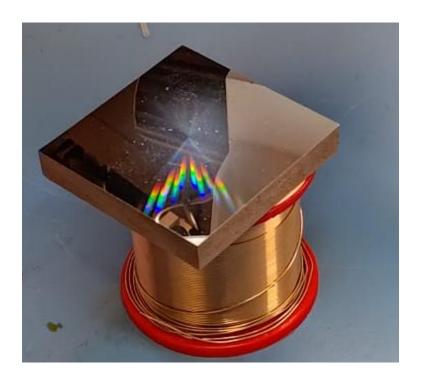
- Au moins 30° sur les angles de fabrication /r au plateau
- Ajouter des dépouilles sous les miroirs, on ajoute le supportage à la pièce
- Rayons < R5
- Libérer les tours des miroirs



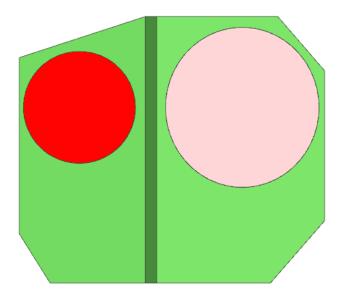
- Au moins 30° sur les angles de fabrication /r au plateau
- Ajouter des dépouilles sous les miroirs, on ajoute le supportage à la pièce
- Rayons < R5
- Libérer les tours des miroirs

- Au moins 30° sur les angles de fabrication /r au plateau
- Ajouter des dépouilles sous les miroirs, on ajoute le supportage à la pièce
- Rayon <R5
- Libérer les tours des miroirs

Echantillons


Pavé de 60*60*10 en AlSiMg7

Présence de porosités visibles après polissage



→ traitement thermique/mécaniques

Pour la suite ?

- Essais de traitement thermiques pour réduire le nombre de porosités (tomographie)
- Redesign car nouveau design optique

- L'étape de re-design prend du temps
- Adapter le résultat de l'optimisation en fonction du mode de fabrication choisi
- Prévoir les changements de formes dus au procédé
- L'optimisation topologique, une aide à la conception

Merci pour votre attention!