

10^{ème} École Technologique 2025 La mécanique en 203 Réseau Des Mécanicien

Impact des fluides cryogéniques sur l'usinabilité et l'intégrité des pièces

1er octobre 2025

Guénaël GERMAIN guenael.germain@ensam.eu

Impact des fluides cryogéniques sur l'usinabilité et l'intégrité des pièces

Soutenance de thèse d'Achraf Fersi 13 juin 2025

Jury

M. Vincent WAGNER M. Guenael GERMAIN M. Yessine AYED M. Bruno LAVISSE Maître de conférences, LAMPA, ENSAM Angers Maître de conférences, LAMPA, ENSAM Angers Example 1 Ra Maître de Mondragon Ra Maître de conférences-HDR, LGP, UTTOP Example 2 Example 3 Ra Maître de conférences-HDR, LAMPA, ENSAM Angers Example 3 Example 3 Example 4 Example 4 Example 4 Example 5 Example 6 Example 6 Example 6 Example 7 Example 7 Example 7 Example 7 Example 7 Example 8 Example 7 Example 8 Example 8 Example 9 Examp	ésidente apporteur pporteur aminateur minateur minateur
--	--

ScCRYO₂

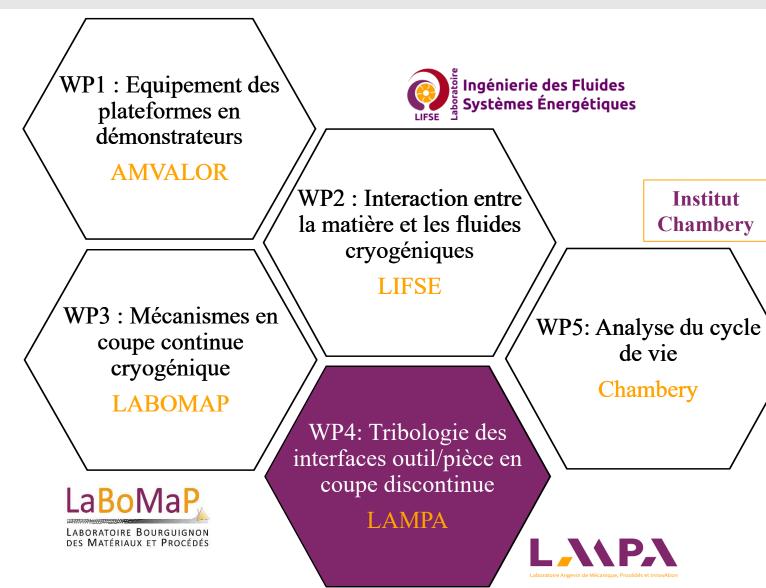
3 Thèses et 1 Post doc

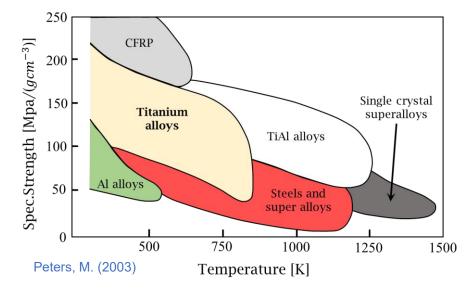
Financeurs:

Institut CARNOT ARTS

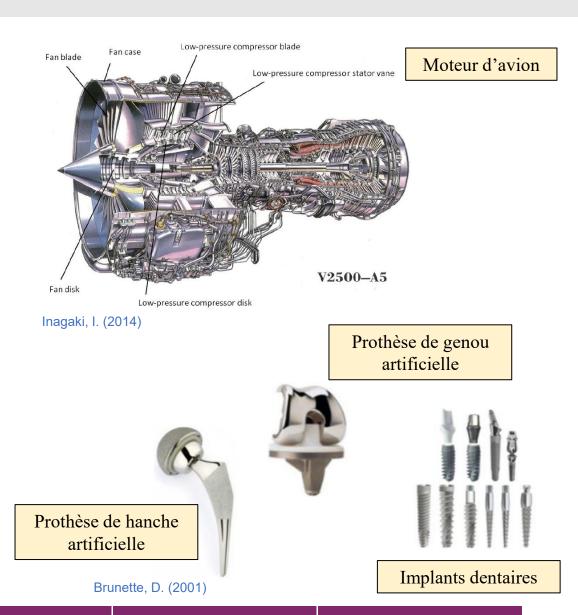
CETIM

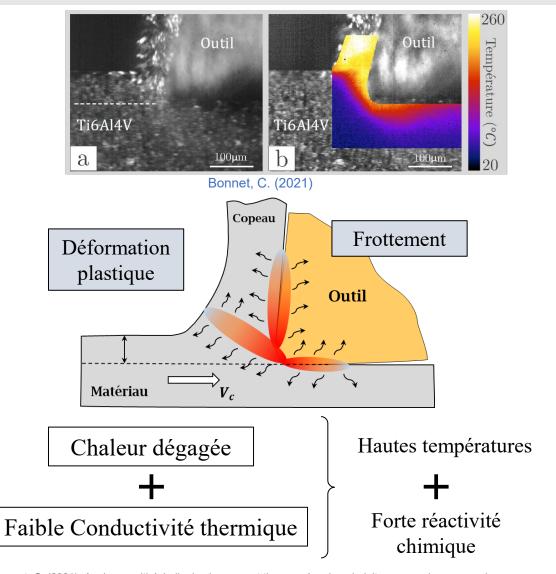
Région Pays de la Loire


Angers Loire Métropole (aldev)



Caractéristiques des alliages de titane


- Faible densité
- Biocompatibilité
- Bonne résistance à la corrosion
- Excellentes propriétés mécaniques


Températures élevées 600 °C

Brunette, D. M., Tengvall, P., Textor, M., & Thomsen, P. (2001). Titanium in medicine: material science, surface science, engineering, biological responses and medical applications (p. 232). Berlin: Springer.

Inagaki, I., Takechi, T., Shirai, Y., & Ariyasu, N. (2014). Application and features of titanium for the aerospace industry. Nippon steel & sumitomo metal technical report, 106(106), 22-27.

Limiter l'utilisation des fluides de coupe en usinage

Objectifs

- Refroidir efficacement la zone de coupe
- Protéger l'environnement et les opérateurs
- Eviter la pollution de surface des pièces

Chercher des alternatives aux fluides de coupe!

« Usinage cryogénique »

Bonnet, C. (2021). Analyse multi-échelle du chargement thermomécanique induit au cours du perçage du Ti-6Al-4V (Doctoral dissertation, Ecole des Mines d'Albi-Carmaux).

Assistance Cryogénique

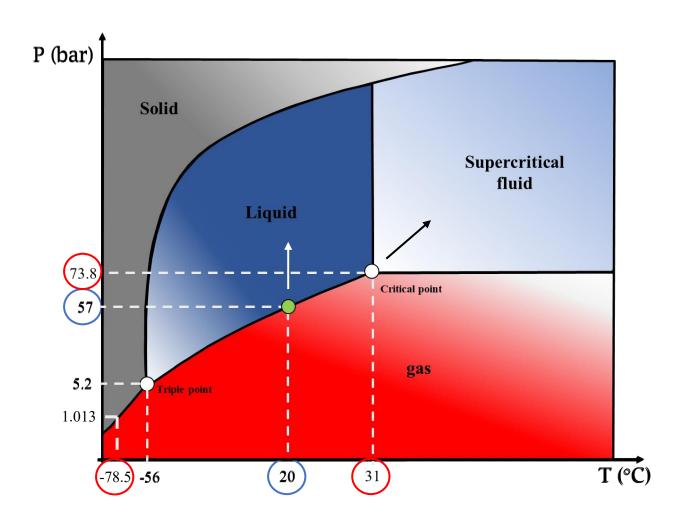
Principe

Refroidir avec des fluides « cryogéniques »

✓ L'azote liquide (LN2)

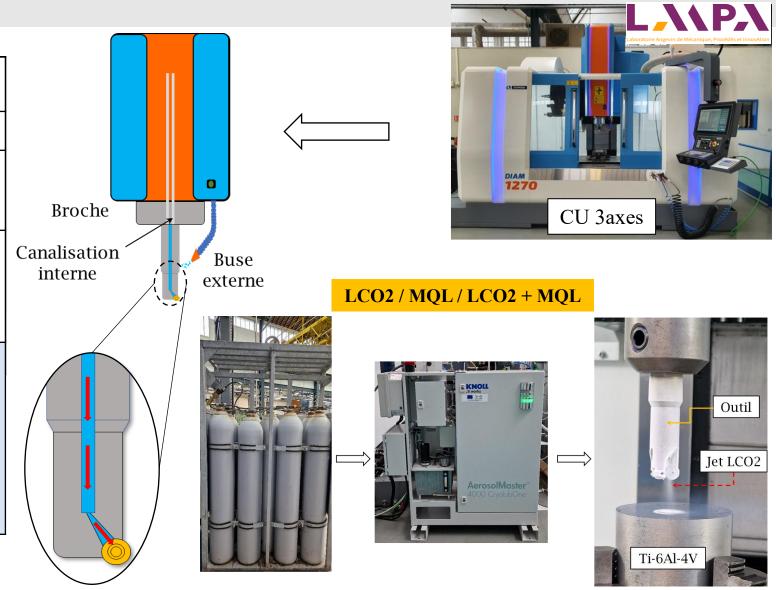
-196°C

✓ Dioxyde de carbone liquide (LCO2)


✓ Dioxyde de carbone supercritique (ScCO2)

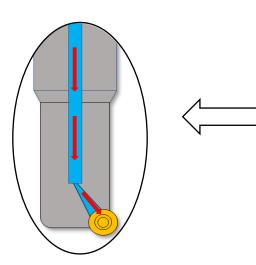
Fraisage avec LCO2

Fraisage avec ScCO2

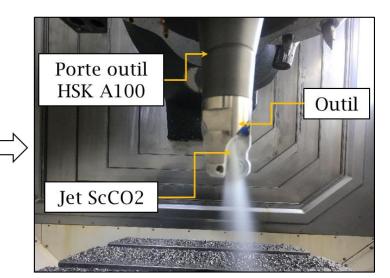


Plan de la présentation

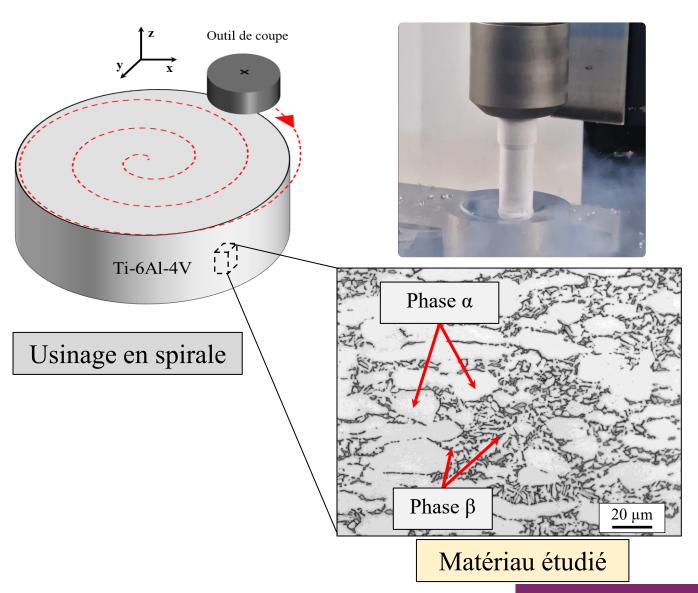
- I. Effet des modes de refroidissement en fraisage
- II. Fraisage cryogénique
- III. Étude tribologique
- IV. Conclusion et perspective

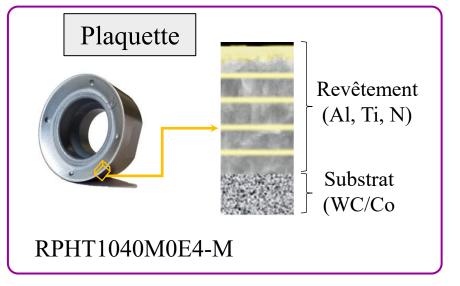

Conditions de lubrification

Type d'assistance	Pression	(Bar)	Débit	Ø buse (mm)
Sec	-		-	-
Lubrification conventionnelle externe	5		12 L/min	5
Lubrification conventionnelle interne	12		12 L/min	3,8
Haute Pression (HP)	50		20 L/min	
LCO2	60		9,5 Kg/h	
	Air	2,6		
MQL	Huile	2,4	25 ml/h	
	Air	2,6		1
LCO2 + MQL	Huile	2,4	25 ml/h	
	CO2	60	9,5 Kg/h	


Effet des modes de refroidissement en fraisage

Type d'assistance	Pression	Pression (Bar)		Ø buse (mm)
Sec	-		-	-
Lubrification conventionnelle externe	5		12 L/min	5
Lubrification conventionnelle interne	12		12 L/min	3,8
Haute Pression (HP)	50		20 L/min	
LCO2	60		9,5 Kg/h	
MQL	air Huile	2,6	25 ml/h	
LCO2 + MQL	air Huile	2,6 2,4	25 ml/h	1
	CO2	60	9,5 Kg/h	
ScCO2	120	0	12 kg/h	0,25





Essai de fraisage

11

Impact des techniques de refroidissement

Paramètres de coupe

 V_c (m/min)

 f_z (mm/tour/dent)

Z

ae (mm)

ap (mm)

Techniques de refroidissement

- Sec
- Émulsion interne
- Émulsion externe
- HP
- MQL
- LCO2
- LCO2+MQL
- ScCO2

Impact des paramètres de coupe

Techniques de refroidissement

- LCO2
- ScCO2

Paramètres de coupe	
V_c (m/min)	150/175/200
f_z (mm/tour/dent)	0,15
Z	1
ae (mm)	12,5
ap (mm)	1/1,5

Mécanismes d'usure

150

0,15

12,5

- Observations MEB
- Analyses EDS

- Topographie et rugosité
- Contrainte résiduelles (DRX)
- Analyse microstructurale (MEB, EBSD)

Impact des techniques de refroidissement

Techniques de refroidissement

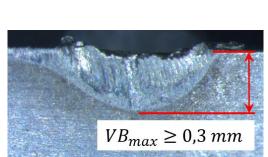
- Sec
- Émulsion interne
- Émulsion externe
- HP
- MQL
- LCO2
- LCO2+MQL
- ScCO2

Paramètres de coupe		
V_c (m/min)	150	
f_z (mm/tour/dent)	0,15	
Z	1	
ae (mm)	12,5	
ap (mm)	1	

Impact des paramètres de coupe

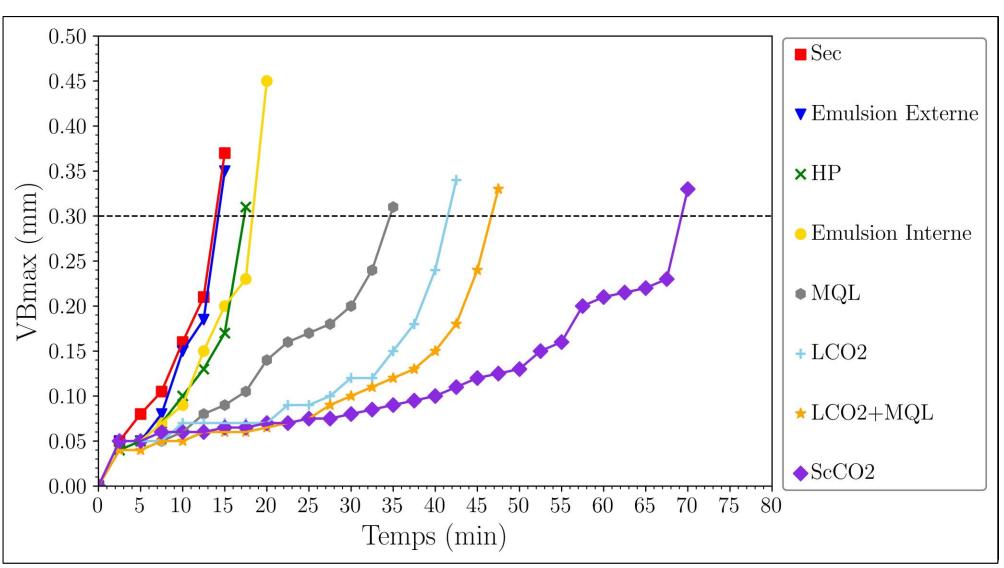
Techniques de refroidissement

- LCO2
- ScCO2


Paramètres de coupe		
V_c (m/min)	150/175/200	
f_z (mm/tour/dent)	0,15	
Z	1	
ae (mm)	12,5	
ap (mm)	1/1,5	

Mécanismes d'usure

- Observations MEB
- Analyses EDS


- Topographie et rugosité
- Contrainte résiduelles (DRX)
- Analyse microstructurale (MEB, EBSD)

Effet des modes de refroidissement en fraisage

Critère de durée de vie

 $200\mu m$

Soutenance de thèse

Impact des techniques de refroidissement

Techniques de refroidissement

- Sec
- Émulsion interne
- Émulsion externe
- HP
- MQL
- LCO2
- LCO2+MQL
- ScCO2

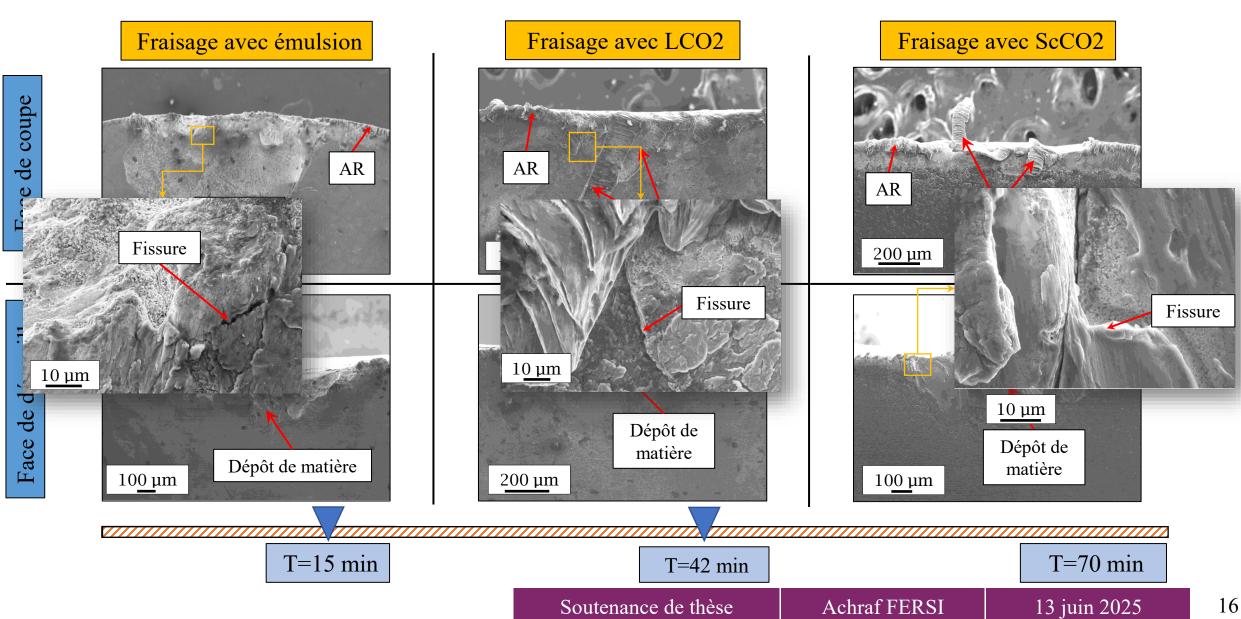
Paramètres de coupe		
V_c (m/min)	150	
f_z (mm/tour/dent)	0,15	
Z	1	
ae (mm)	12,5	
ap (mm)	1	

Impact des paramètres de coupe

Techniques de refroidissement

- LCO2
- ScCO2

Paramètres de coupe		
V_c (m/min)	150/175/200	
f_z (mm/tour/dent)	0,15	
Z	1	
ae (mm)	12,5	
ap (mm)	1/1,5	


Mécanismes d'usure

- Observations MEB
- Analyses EDS

Intégrité de surface - Topographie et rugosité

- Contrainte résiduelles (DRX)
- Analyse microstructurale (MEB, EBSD)

Mécanismes d'usure

Impact des techniques de refroidissement

Techniques de refroidissement

- Sec
- Émulsion interne
- Émulsion externe
- HP
- MQL
- LCO₂
- LCO2+MQL
- ScCO2

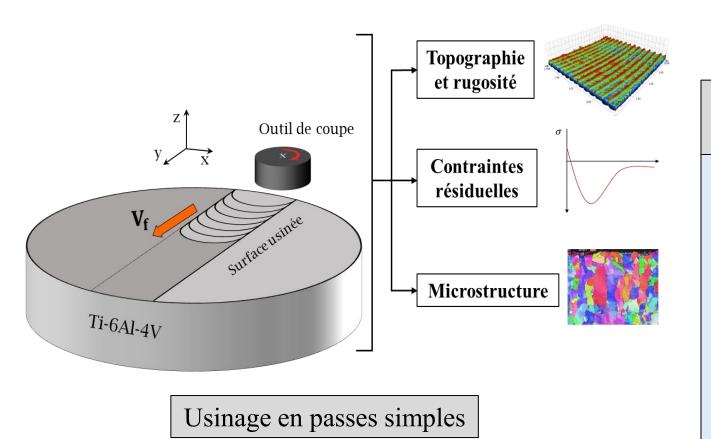
Paramètres de coupe		
V_c (m/min)	150	
f_z (mm/tour/dent)	0,15	
Z	1	
ae (mm)	12,5	
ap (mm)	1	

Impact des paramètres de coupe

- LCO₂
- ScCO₂

Paramètres de coupe	
V_c (m/min)	150/175/200
f_z (mm/tour/dent)	0,15
Z	1
ae (mm)	12,5
ap (mm)	1/1,5

Mécanismes d'usure


- Observations MEB
- Analyses EDS

Topographie et rugosité

- Contrainte résiduelles (DRX)
- Analyse microstructurale (MEB, EBSD)

Intégrité de surface

Effet des modes de refroidissement en fraisage

Techniques de refroidissement

- Sec
- Émulsion
- HP
- MQL
- LCO2
- LCO2+MQL
- ScCO2

Paramètres de coupe		
V_c (m/min)	150	
f_z (mm/tour/dent)	0,15	
Z	1	
ae (mm)	12,5	
ap (mm)	1	

Synthèse

Point de fonctionnemer	- nt
$V_c = 150 \text{ m. min}^{-1}$ $f_z = 0.15 \text{ mm/tour/dent}$ $a_p = 1 \text{ mm}$ $a_e = 12.5 \text{ mm}$	

	Gain en	Mécanismes de dégradation et d'usure			Intégrité de surface	
	durée de vie	Adhésion	Fissure	Écaillage	Ra (µm)	C.R (MPa)
Émulsion	14 min	+++	++	+++	0,39	-250
НР	+21%	+++	++	+++	0,3	-245
MQL	+142%	++	++	+++	0,24	-240
LCO2+MQL	+227%	++	++	+++	0,25	-260
LCO2	+191%	++	++		0,25	-255
ScCO2	+385%	++	++		0,23	-350

L'assistance cryogénique permet de :

Effet des modes de refroidissement en fraisage

- Prolonger considérablement la durée de vie par rapport à l'émulsion
- Limiter la dégradation de l'outil et l'usure par adhésion et écaillage
- Réduire la rugosité des surfaces usinées de 35 % à 41 % par rapport à 1'émulsion

L'utilisation de ScCO2 augmente les contraintes résiduelles en compression de 40%

I. Effet des modes de refroidissement en fraisage

II. Fraisage cryogénique

III. Étude tribologique

IV. Conclusion et perspective

Impact des techniques de refroidissement

Techniques de refroidissement

- Sec
- Émulsion interne
- Émulsion externe
- HP
- MQL
- LCO2
- LCO2+MQL
- ScCO2

Paramètres de coupe			
V_c (m/min)	150		
f_z (mm/tour/dent)	0,15		
Z	1		
ae (mm)	12,5		
ap (mm)	1		

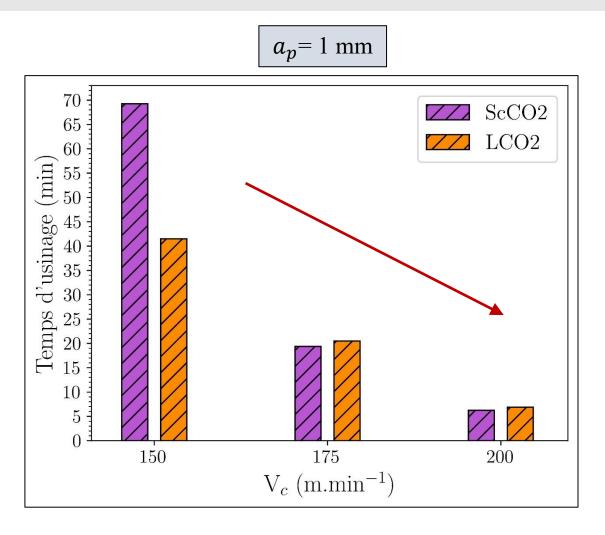
Impact des paramètres de coupe

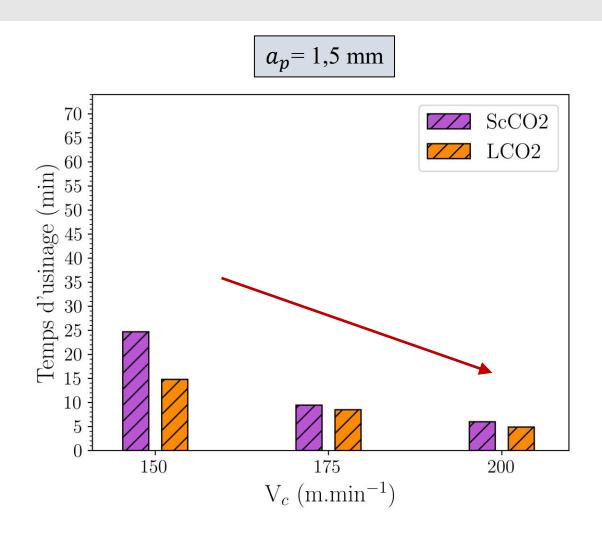
Techniques de refroidissement

- LCO2
- ScCO2

Paramètres de coupe			
V_c (m/min)	150/175/200		
f_z (mm/tour/dent)	0,15		
Z	1		
ae (mm)	12,5		
ap (mm)	1/1,5		

Durée de vie


- VBmax = 0.3 mm


Mécanismes d'usure

- Observations MEB
- Analyses EDS

- Topographie et rugosité
- Contrainte résiduelles (DRX)

Durée de vie

Impact des techniques de refroidissement

Techniques de refroidissement

- Sec
- Émulsion interne
- Émulsion externe
- HP
- MQL
- LCO2
- LCO2+MQL
- ScCO2

Paramètres de coupe			
V_c (m/min)	150		
f_z (mm/tour/dent)	0,15		
Z	1		
ae (mm)	12,5		
ap (mm)	1		

Impact des paramètres de coupe

Techniques de refroidissement

- LCO2
- ScCO2

Paramètres de coupe			
V_c (m/min)	150/175/200		
f_z (mm/tour/dent)	0,15		
Z	1		
ae (mm)	12,5		
ap (mm)	1/1,5		

Durée de vie

- VBmax = 0.3 mm

Mécanismes d'usure

- Observations MEB
- Analyses EDS

- Topographie et rugosité
- Contrainte résiduelles (DRX)

Impact des techniques de refroidissement

Techniques de refroidissement

- Sec
- Émulsion interne
- Émulsion externe
- HP
- MQL
- LCO2
- LCO2+MQL
- ScCO2

Paramètres de coupe			
V_c (m/min)	150		
f_z (mm/tour/dent)	0,15		
Z	1		
ae (mm)	12,5		
ap (mm)	1		

Impact des paramètres de coupe

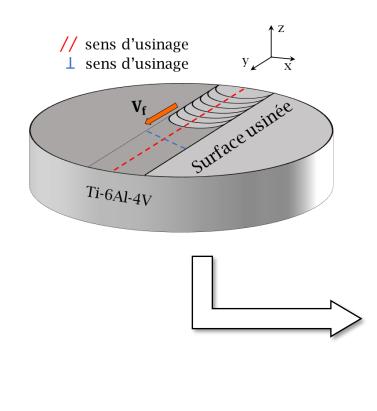
Techniques de refroidissement

- LCO2
- ScCO2

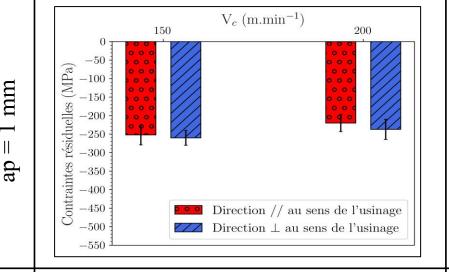
Paramètres de coupe			
V_c (m/min)	150/200		
f_z (mm/tour/dent)	0,15		
Z	1		
ae (mm)	12,5		
ap (mm)	1/1,5		

Durée de vie

- VBmax = 0.3 mm


Mécanismes d'usure

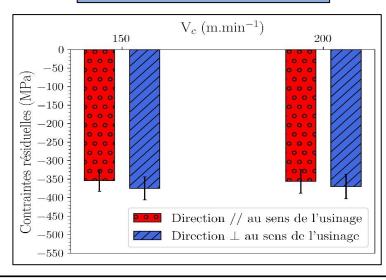
- Observations MEB
- Analyses EDS

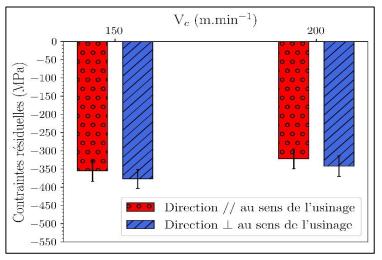

- Topographie et rugosité
- Contrainte résiduelles (DRX)

Intégrité de surface

Contraintes résiduelles

Fraisage avec LCO2


$V_c \text{ (m.min}^{-1}\text{)}$ 200 150 résiduelles (MPa) -100-150-200-250-300Contraintes -350-400-450Direction // au sens de l'usinage -500✓ Direction ⊥ au sens de l'usinage


mm

3,

-550

Fraisage avec ScCO2

Synthèse

Type d'assistance	Pression (Bar)		Débit	Ø buse (mm)
Sec	-		-	-
Lubrification conventionnelle externe	5		12 L/min	5
Lubrification conventionnelle interne	12		12 L/min	3,8
Haute Pression (HP)	50		20 L/min	
LCO2	60		9,5 Kg/h	
MQL	air Huile	2,6	25 ml/h	
I CO2 + MOI	air	2,6	25 ml/h	1
LCO2 + MQL	Huile	2,4	23 IIII/II	
	CO2	60	9,5 Kg/h	
ScCO2	120		12 kg/h	0,25

- Le ScCO2 est plus efficace que le LCO2 lors de fraisage à une vitesse de 150 m. min⁻¹
- La qualité des surfaces n'est pas influencée par la nature de fluide cryogénique.
- Le fraisage avec ScCO2 génère des contraintes résiduelles plus importantes que celles obtenus en cas de fraisage avec LCO2.
- Pour une durée de vie fixé à 14 minutes, l'assistance cryogénique avec LCO2 / ScCO2 permet d'augmenter la productivité de 20 % par rapport à l'émulsion.