

Garage, an S3 backend as reliable as possible

https://garagehq.deuxfleurs.fr/mailto:garagehq@deuxfleurs.fr#garage:deuxfleurs.fr on Matrix

Getting support for Garage

Alex AuvolatPhD; co-founder of Deuxfleurs
Garage maintainer, Freelance

Quentin DufourPhD; co-founder of Deuxfleurs
Garage contributor, Freelance

For support requests, write at: garagehq@deuxfleurs.fr

Armaël GuéneauPhD; member of Deuxfleurs
Garage contributor, Freelance

Eligible: email support, architecture design, specific feature development, etc.

Meet Garage

A non-profit initiative

Part of a degrowth initiative

Garage has been created at Deuxfleurs where we experiment running Internet services without datacenter on commodity and refurbished hardware.

Developed by a community

Some recent contributors: Arthur C, Charles H, dongdigua, Etienne L, Jonah A, Julien K, Lapineige, MagicRR, Milas B, Niklas M, RockWolf, Schwitzd, trinity-1686a, Xavier S, babykart, Baptiste J, eddster2309, James O'C, Joker9944, Maximilien R, Renjaya RZ, Yureka...

Diluted open-source as a response to fauxpen-source

 $\mathsf{AGPL} + \mathsf{no}$ Contributor License Agreement = Garage ownership spreads among hundredth of contributors.

Mainly funded by the EU

Our initial goal

As web citizens, datacenters are big black boxes. We want to leave them to autonoumously manage our servers.

We want reliable services without relying on dedicated hardware or places.

Commodity hardware (e.g. old desktop PCs)

Commodity hardware (e.g. old desktop PCs)

(can die at any time)

Commodity hardware (e.g. old desktop PCs)

(can die at any time)

▶ Regular Internet (e.g. FTTB, FTTH) and power grid connections

Commodity hardware (e.g. old desktop PCs)

(can die at any time)

▶ Regular Internet (e.g. FTTB, FTTH) and power grid connections (can be unavailable randomly)

► Commodity hardware (e.g. old desktop PCs) (can die at any time)

- ► Regular Internet (e.g. FTTB, FTTH) and power grid connections (can be unavailable randomly)
- ► Geographical redundancy (multi-site replication)

Object storage: a crucial component

S3: a de-facto standard, many compatible applications

Object storage: a crucial component

S3: a de-facto standard, many compatible applications

MinIO is self-hostable but not suited for geo-distributed deployments

Object storage: a crucial component

S3: a de-facto standard, many compatible applications

MinIO is self-hostable but not suited for geo-distributed deployments

Garage is a self-hosted drop-in replacement for the Amazon S3 object store

Internally, Garage uses only CRDTs (conflict-free replicated data types)

Internally, Garage uses only CRDTs (conflict-free replicated data types)

Why not Raft, Paxos, ...? Issues of consensus algorithms:

Software complexity

Internally, Garage uses only CRDTs (conflict-free replicated data types)

- Software complexity
- **▶** Performance issues:

Internally, Garage uses only CRDTs (conflict-free replicated data types)

- Software complexity
- Performance issues:
 - ► The leader is a **bottleneck** for all requests

Internally, Garage uses only CRDTs (conflict-free replicated data types)

- ► Software complexity
- Performance issues:
 - ► The leader is a **bottleneck** for all requests
 - Sensitive to higher latency between nodes

Internally, Garage uses only CRDTs (conflict-free replicated data types)

- Software complexity
- ► Performance issues:
 - ► The leader is a **bottleneck** for all requests
 - Sensitive to higher latency between nodes
 - ► Takes time to reconverge when disrupted (e.g. node going down)

The data model of object storage

Object storage is basically a **key-value store**:

Key: file path + name	Value: file data + metadata				
index.html	Content-Type: text/html; charset=utf-8				
	Content-Length: 24929				
	 dinary blob>				
img/logo.svg	Content-Type: text/svg+xml				
	Content-Length: 13429				
	 dinary blob>				
download/index.html	Content-Type: text/html; charset=utf-8				
	Content-Length: 26563				
	 dinary blob>				

The data model of object storage

Object storage is basically a **key-value store**:

Key: file path + name	Value: file data + metadata					
index.html	Content-Type: text/html; charset=utf-8 Content-Length: 24929					
	 dinary blob>					
img/logo.svg	Content-Type: text/svg+xml					
	Content-Length: 13429					
	 dinary blob>					
download/index.html	Content-Type: text/html; charset=utf-8					
	Content-Length: 26563					
	 dinary blob>					

Maps well to CRDT data types

Performance gains in practice

S3 endpoint latency in a simulated geo-distributed cluster

100 measurements, 5 nodes, 50ms RTT + 10ms jitter between nodes no contention: latency is due to intra-cluster communications colored bar = mean latency, error bar = min and max latency

Get the code to reproduce this graph at https://git.deuxfleurs.fr/Deuxfleurs/mknet

Production clusters

Deployment kinds

How big they are?

"Petabyte storage setup for a video site. Nginx as CDN in-front using garage-s3-website feature. Each storage node has 64TB storage with raid10, no replication within garage. 25gbit nic. haproxy to loadbalance across 5 nodes. mostly reads with very few writes."

"We currently manage 7 Garage nodes, 28TB total storage, 6M blocks for 3M objects and 4TB of object data. We have been running Garage in production for 2.5 years."

Operating Garage

```
garage status
==== HEALTHY NODES ====
                  Hostname
                            Address
                                                                            Tags
                                                                                        Zone
                                                                                                 Capacity
                                                                                                           DataAvail
ec5753c546756825
                  df-pw5
                            [2a02:a03f:6510:5102:223:24ff:feb0:e8a71:3991
                                                                            [df-pw5]
                                                                                        bespin
                                                                                                 500.0 GB 429.1 GB (89.0%)
76797283f6c7e162
                            [2001:470:ca43::221:3991
                                                                                                 200.0 GB
                                                                                                           166.3 GB (73.5%)
                                                                            [carcaiou]
                                                                                        neptune
8073f25ffb7d6944
                  piranha
                            [2a01:cb05:911e:ec00:223:24ff:feb0:ea82]:3991
                                                                            [piranha]
                                                                                                 500.0 GB
                                                                                                           457.3 GB (94.0%)
3aed398eec82972b
                            [2a01:e0a:5e4:1d0:223:24ff:feaf:fdec]:3991
                                                                            [origan]
                                                                                                 500.0 GB 457.1 GB (93.1%)
967786691f20bb79
                  caribou
                            [2001:470:ca43::231:3991
                                                                            [caribou]
                                                                                                 500.0 GB 453.1 GB (92.3%)
                                                                                        neptune
```

Operating Garage

```
garage status
==== HEALTHY NODES ====
                  Hostname
                            Address
                                                                            Tags
                                                                                         Zone
                                                                                                  Capacity
                                                                                                            DataAvail
ec5753c546756825
                  df-pw5
                            [2a02:a03f:6510:5102:223:24ff:feb0:e8a71:3991
                                                                            [df-pw5]
                                                                                         bespin
                                                                                                  500.0 GB
                                                                                                            429.1 GB (89.0%)
76797283f6c7e162
                                                                                                  200.0 GB
                            [2001:470:ca43::221:3991
                                                                            [carcaiou]
                                                                                         neptune
                                                                                                            166.3 GB (73.5%)
8073f25ffb7d6944
                  piranha
                            [2a01:cb05:911e:ec00:223:24ff:feb0:ea821:3991
                                                                            [piranha]
                                                                                                  500.0 GB
                                                                                                            457.3 GB (94.0%)
3aed398eec82972b
                            [2a01:e0a:5e4:1d0:223:24ff:feaf:fdec1:3991
                                                                            [origan]
                                                                                                  500.0 GB 457.1 GB (93.1%)
967786691f20bb79
                            [2001:470:ca43::231:3991
                                                                                                  500.0 GB 453.1 GB (92.3%)
                  caribou
                                                                            [caribou]
                                                                                         neptune
```

```
garage status
==== HEALTHY NODES ====
                  Hostname
                                                                            Tags
                                                                                        Zone
                                                                                                  Capacity
                                                                                                            DataAvail
76797283f6c7e162
                  carcaiou
                            [2001:470:ca43::221:3991
                                                                            [carcaiou]
                                                                                        neptune
                                                                                                  200.0 GB
                                                                                                            166.3 GB (73.5%)
8073f25ffb7d6944
                            [2a01:cb05:911e:ec00:223:24ff:feb0:ea82]:3991
                                                                                                  500.0 GB
                                                                                                            457.3 GB (94.0%)
                                                                            [piranha]
3aed398eec82972b
                            [2a01:e0a:5e4:1d0:223:24ff:feaf:fdec1:3991
                                                                            [origan]
                                                                                                 500.0 GB
                                                                                                            457.1 GB (93.1%)
967786691f20bb79
                            [2001:470:ca43::231:3991
                                                                                                 500.0 GB
                                                                                                           453.1 GB (92.3%)
                 caribou
                                                                            [caribou]
                                                                                        neptune
==== FATLED NODES ====
                            Address
                                                                            Tags
                                                                                       Zone
                                                                                               Capacity Last seen
                  Hostname
ec5753c546756825
                 df-pw5
                            [2a02:a03f:6510:5102:223:24ff:feb0:e8a7]:3991
                                                                            [df-pw5]
                                                                                      bespin
                                                                                               500.0 GB 5 minutes ago
```

Garage's architecture

Garage as a set of components

Garage's architecture

Digging deeper

```
garage stats
Garage version: 20240116133343 [features: k2v, sled, lmdb, sglite, consul-discoverv, kubernetes-discoverv, metrics, telemetrv-otlp, bundled-libs]
Rust compiler version: 1.68.0
Database engine: LMDB (using Heed crate)
Table stats:
  Table
            Ttems
                    MklItems MklTodo GcTodo
 bucket v2 19
            67391 80964
 block ref 334735 370927
Block manager stats:
 number of RC entries (~= number of blocks): 42376
  resync queue length: 0
 blocks with resync errors: 0
If values are missing above (marked as NC), consider adding the --detailed flag (this will be slow).
Storage nodes:
                                      Capacity Part, DataAvail
                   Hostname Zone
                                                                                 MetaAvail
 ec5753c546756825 df-pw5
                                     500.0 GB 175
                                                      429.1 GB/482.1 GB (89.0%) 429.1 GB/482.1 GB (89.0%)
 76797283f6c7e162 carcaiou nentune 200.0 GB 70
                                                      166.3 GB/226.2 GB (73.5%) 166.3 GB/226.2 GB (73.5%)
 8073f25ffb7d6944 piranha
                                     500.0 GB 173
                                                      457.3 GB/486.4 GB (94.0%) 457.3 GB/486.4 GB (94.0%)
                             jupiter 500.0 GB 175
  3aed398eec82972b origan
                                                      457.1 GB/490.7 GB (93.1%) 457.1 GB/490.7 GB (93.1%)
 967786691f20bb79 caribou
                            neptune 500.0 GB 175
                                                      453.1 GB/490.8 GB (92.3%) 453.1 GB/490.8 GB (92.3%)
Estimated available storage space cluster-wide (might be lower in practice):
  data: 608.3 GB
  metadata: 608.3 GB
```

Digging deeper

s garage worker list									
TID	State			Dono	Queue		Consec		
1	Idle	Block resync worker #1			0				
5	Idle	Block resync worker #2							
2	Idle	Block resync worker #3							
4	Idle	Block resync worker #4							
6	Idle	Block resync worker #5							
ē	Idle	Block resync worker #6							
7	Idle	Block resync worker #7							
8	Idle	Block resync worker #8							
o o	Idle	Block scrub worker							
10	Idle	bucket v2 Merkle							
11	Idle							17 hours ago	
12	Idle	bucket_v2 sync bucket_v2 GC						17 nours ago	
13	Idle	bucket_vz oc							
14		bucket_v2 queue bucket_alias Merkle							
15	Idle Idle	bucket_alias Merkle							
16		bucket_alias sync							
	Idle								
17	Idle	bucket_alias queue							
18 19	Idle								
	Idle	key sync						17 hours ago	
26	Idle								
21	Idle	key queue							
22	Idle								
23	Idle								
24									
25									
26		bucket_object_counter Merkle							
27								17 hours ago	
28		bucket_object_counter GC							
29		bucket_object_counter queue							
30		multipart_upload Merkle							
31									
32	Idle	multipart_upload GC							
33									
34	Idle	bucket_mpu_counter Merkle							
35	Idle	bucket_mpu_counter sync							
36		bucket_mpu_counter GC							
37		bucket_mpu_counter queue							
38									
39								17 hours ago	
40	Idle	version GC							
41		version queue							
42									
43	Idle							17 hours ago	
44									
45									
46	Idle	object lifecycle worker							

Digging deeper

```
garage worker get
8073f25ffb7d6944 lifecycle-last-completed
                                             2024-01-23
8073f25ffb7d6944
                 resync-tranguility
8073f25ffb7d6944
                 resync-worker-count
8073f25ffb7d6944
                 scrub-corruptions detected
8073f25ffb7d6944
                 scrub-last-completed
                                             2023-12-27T13:49:33.234Z
                 scrub-next-run
8073f25ffb7d6944
                                             2024-01-31T03:23:02.2347
8073f25ffb7d6944
                 scrub-tranguility
 garage worker get -a resync-tranguility
3aed398eec82972b resync-tranquility
76797283f6c7e162
                 resync-tranquility
8073f25ffb7d6944
                 resync-tranquility
967786691f20bb79
                 resync-tranquility 1
ec5753c546756825
                 resync-tranquility 1
```

Potential limitations and bottlenecks

- Global:
 - ► Max. ~100 nodes per cluster (excluding gateways)
- Metadata:
 - ▶ One big bucket = bottleneck, object list on 3 nodes only
- ▶ Block manager:
 - Lots of small files on disk
 - Processing the resync queue can be slow

Deployment advice for very large clusters

- Metadata storage:
 - ► ZFS mirror (x2) on fast NVMe
 - ► Use LMDB storage engine
- ► Data block storage:
 - ► Use Garage's native multi-HDD support
 - XFS on individual drives
 - ightharpoonup Increase block size (1MB ightharpoonup 10MB, requires more RAM and good networking)
 - ► Tune resync-tranquility and resync-worker-count dynamically
- Other:
 - Split data over several buckets
 - ► Use less than 100 storage nodes
 - Use gateway nodes

Focus on Deuxfleurs

500+ hosted websites directly on Garage partnership with web agencies, institutional website hosted.

Recent developments

April 2022 - Garage v0.7.0

Focus on observability and ecosystem integration

- ▶ Monitoring: metrics and traces, using OpenTelemetry
- ▶ Replication modes with 1 or 2 copies / weaker consistency
- ► Kubernetes integration for node discovery
- Admin API (v0.7.2)

Metrics (Prometheus + Grafana)

Traces (Jaeger)

November 2022 - Garage v0.8.0

Focus on performance

- ► Alternative metadata DB engines (LMDB, Sqlite)
- ▶ Performance improvements: block streaming, various optimizations...
- ► Bucket quotas (max size, max #objects)
- ▶ Quality of life improvements, observability, etc.

About metadata DB engines

Issues with Sled:

- ► Huge files on disk
- ► Unpredictable performance, especially on HDD
- ► API limitations
- ► Not actively maintained

LMDB: very stable, good performance, file size is reasonable **Sqlite** also available as a second choice

Sled will be removed in Garage v1.0

DB engine performance comparison

NB: Sqlite was slow due to synchronous mode, now configurable

Block streaming

Block streaming

TTFB benchmark

TTFB (Time To First Byte) on GetObject over a slow network (5 Mbps, 500 μs)

A 1MB file is uploaded and then fetched 60 times.

Except for Minio, the queried node does not store any data (gateway) to force net. communications.

Get the code to reproduce this graph at https://git.deuxfleurs.fr/Deuxfleurs/mknet

Throughput benchmark

October 2023 - Garage v0.9.0

Focus on streamlining & usability

- ► Support multiple HDDs per node
- S3 compatibility:
 - support basic lifecycle configurations
 - allow for multipart upload part retries
- ▶ LMDB by default, deprecation of Sled
- New layout computation algorithm

Layout computation

```
root@celeri:/home/lxl# docker exec -ti e338 /garage status
==== HEALTHY NODES ====
ΤD
                  Hostname
                             Address
                                                                                Tags
                                                                                                                  Zone
                                                                                                                           Capacity
5fcb3b6e39db3dcb
                  concombre
                             [2001:470:ca43::311:3901
                                                                                [concombre, neptune, france, alex]
                                                                                                                  neptune
                                                                                                                           500.0 GB
942dd71ea95f4904
                  df-ymf
                             [2a02:a03f:6510:5102:6e4b:90ff:fe3a:6174]:3901
                                                                               [df-vmf.bespin.belgium.max]
                                                                                                                  bespin
                                                                                                                           500.0 GB
fdfaf7832d8359e0
                  df-ymk
                              [2a02:a03f:6510:5102:6e4b:90ff:fe3b:e9391:3901
                                                                                [df-vmk.bespin.belgium.max]
                                                                                                                  bespin
                                                                                                                           500.0 GB
0a03ab7c082ad929
                  ananas
                              [2a01:e0a:e4:2dd0::421:3901
                                                                                [ananas,scorpio,france,adrien]
                                                                                                                          2.0 TB
a717e5b618267806
                  courgette
                             [2001:470:ca43::32]:3901
                                                                                [courgette,neptune,france,alex]
                                                                                                                  neptune
                                                                                                                           500.0 GB
2032d0a37f249c4a
                             [2a01:e0a:e4:2dd0::411:3901
                                                                                [abricot,scopio,france,adrien]
                                                                                                                          2.0 TB
                  abricot
8cf284e7df17d0fd
                             [2001:470:ca43::331:3901
                                                                                [celeri,neptune,france,alex]
                                                                                                                          2.0 TB
                                                                                                                  neptune
17ee03c6b81d9235
                              [2a02:a03f:6510:5102:6e4b:90ff:fe3b:e86c]:3901
                                                                               [df-vkl,bespin,belgium,max]
                                                                                                                           500.0 GB
```

Garage stores replicas on different zones when possible

Layout computation

Garage stores replicas on different zones when possible

What a "layout" is

A layout is a precomputed index table:

Partition	Node 1	Node 2	Node 3
Partition 0	df-ymk (bespin)	Abricot (scorpio)	Courgette (neptune)
Partition 1	Ananas (scorpio)	Courgette (neptune)	df-ykl (bespin)
Partition 2	df-ymf (bespin)	Celeri (neptune)	Abricot (scorpio)
:	:	i i	i i
Partition 255	Concombre (neptune)	df-ykl (bespin)	Abricot (scorpio)

What a "layout" is

A layout is a precomputed index table:

Partition	Node 1	Node 2	Node 3
Partition 0	df-ymk (bespin)	Abricot (scorpio)	Courgette (neptune)
Partition 1	Ananas (scorpio)	Courgette (neptune)	df-ykl (bespin)
Partition 2	df-ymf (bespin)	Celeri (neptune)	Abricot (scorpio)
:	:	i i	i i
Partition 255	Concombre (neptune)	df-ykl (bespin)	Abricot (scorpio)

The index table is built centrally using an optimal algorithm, then propagated to all nodes

What a "layout" is

A layout is a precomputed index table:

Partition	Node 1	Node 2	Node 3
Partition 0	df-ymk (bespin)	Abricot (scorpio)	Courgette (neptune)
Partition 1	Ananas (scorpio)	Courgette (neptune)	df-ykl (bespin)
Partition 2	df-ymf (bespin)	Celeri (neptune)	Abricot (scorpio)
:	:	i i	:
Partition 255	Concombre (neptune)	df-ykl (bespin)	Abricot (scorpio)

The index table is built centrally using an optimal algorithm, then propagated to all nodes

Oulamara, M., & Auvolat, A. (2023). An algorithm for geo-distributed and redundant storage in Garage. arXiv preprint arXiv:2302.13798.

April 2024 - Garage v1.0.0

Focus on consistency, security & stability

- ▶ Fix consistency issues when reshuffling data (Jepsen testing)
- ► Security audit by Radically Open Security
- ▶ Misc. S3 features (SSE-C, checksums, ...) and compatibility fixes

Garage v2.0 - Administration

Focus on administrative features that require a data model migration:

- ► Full support for website redirections
- Access key expiration
- Multiple admin token
- ► Full rework of the admin API
- New metadata engine: fjall (LSM-Tree, similar to RocksDB)

Garage v3.0 - Predictible performances

Currently trying to fund development for Garage v3.0:

- ▶ Fix backpressure issues during batch inserts of small files
- ► CRDT tombstone garbage collector

Small file batch insert = performance collapse

We run community surveys

Where to find us

https://garagehq.deuxfleurs.fr/mailto:garagehq@deuxfleurs.fr#garage:deuxfleurs.fr on Matrix

