8–12 juil. 2024
BÂTIMENT D’ENSEIGNEMENT MUTUALISÉ (BEM)
Fuseau horaire Europe/Paris

Assisting sampling of equilibrium physical states with generative models

10 juil. 2024, 11:30
45m
BÂTIMENT D’ENSEIGNEMENT MUTUALISÉ (BEM)

BÂTIMENT D’ENSEIGNEMENT MUTUALISÉ (BEM)

Bâtiment d'Enseignement Mutualisé (BEM) Av. Fresnel, 91120 Palaiseau
Talk (Long) Invited talks Material and Quantum Physics

Orateur

Marylou Gabrié (École Polytechnique)

Description

Deep generative models parametrize very flexible families of distributions able to fit complicated datasets of images or text. These models provide independent samples from complex high-distributions at negligible costs. On the other hand, sampling exactly a target distribution, such the Boltzmann distribution of a physical system, is typically challenging: either because of dimensionality, multi-modality, ill-conditioning or a combination of the previous. In this talk, I will discuss opportunities and challenges in enhancing traditional inference and sampling algorithms with learning.

Auteur principal

Marylou Gabrié (École Polytechnique)

Documents de présentation

Aucun document.