8–12 juil. 2024
BÂTIMENT D’ENSEIGNEMENT MUTUALISÉ (BEM)
Fuseau horaire Europe/Paris

A nonlinear reduced basis approximation of discrete contact problems in crowd motion

Non programmé
20m
BÂTIMENT D’ENSEIGNEMENT MUTUALISÉ (BEM)

BÂTIMENT D’ENSEIGNEMENT MUTUALISÉ (BEM)

Bâtiment d'Enseignement Mutualisé (BEM) Av. Fresnel, 91120 Palaiseau
Poster

Orateur

Giulia Sambataro (École des Ponts ParisTech)

Description

In this work we adapt recent model reduction approaches to predict the solutions of
time-dependent parametrized problems describing crowd motion in the presence of ob-
stacles. The problem of interest is a discrete contact model, which is formulated as a
constrained least-squares optimization statement. The parametric variations in the prob-
lem (associated with the geometric configuration of the system and with the initial posi-
tions of the particles) have a dramatic impact in the solution, both in terms of positions
and contact forces, which are represented by the Lagrange multipliers of the underling
saddle-point problem. Motivated by a slow decay of the Kolmogorov n-width, we inves-
tigate new developments and combinations of the reduced-basis method and supervised
machine-learning techniques to effectively estimate primal and dual solutions. The pro-
posed nonlinear compressive strategy is numerically validated by comparisons with more
standard linear and nonlinear approximations.

Auteurs principaux

Giulia Sambataro (École des Ponts ParisTech) Prof. Virginie Ehrlacher (École des Ponts ParisTech)

Documents de présentation

Aucun document.