8–12 juil. 2024
BÂTIMENT D’ENSEIGNEMENT MUTUALISÉ (BEM)
Fuseau horaire Europe/Paris

Understanding uncertainty in machine learning with tractable models

10 juil. 2024, 14:45
45m
BÂTIMENT D’ENSEIGNEMENT MUTUALISÉ (BEM)

BÂTIMENT D’ENSEIGNEMENT MUTUALISÉ (BEM)

Bâtiment d'Enseignement Mutualisé (BEM) Av. Fresnel, 91120 Palaiseau
Talk (Long) Invited talks Physics for Machine Learning

Orateur

Dr Bruno Loureiro (ENS Ulm)

Description

Measuring the uncertainty associated to a model's prediction is a central part of statistical practice. In the context of modern deep learning practice, several methods for quantifying the uncertainty of neural networks co-exist. Yet, theoretical guarantees for these methods are scarce in the theoretical literature. In this talk, I will discuss how some of them compare in a mathematically tractable settings where we sharply characterise the statistical properties of the estimators, employing ideas from high-dimensional statistics and statistical physics.

Documents de présentation

Aucun document.